

Tanta University

Faculty of Science Department of Botany

Theoretical Examination for 4th Year Students of Chem/ Botany

Course Code: BO 4123

Date:

January 9/2023

Term: 1

Total Assessment Marks: 100 Time Allowed: 2h

Ouestion 1: Give short accounts on the followings

(30 marks)

- 1- Chemical structure of Cyanocobalamin (vitamin B₁₂) and its function for algae.
- 2- Algal cultures in photobioreactors: uses, advantages and disadvantages.
- 3- The structure and function of chlorophyll molecule.
- 4- Stationary phase in the standard algal growth curve.
- 5- Light and combined nitrogen as factors affecting N2 fixation in algae.
- 6- Photo-assimilation of acetate by algae.

Question 2: Complete the following sentences

(20 marks)

1- Auxotrophic algae are..... 2- Xanthophyll pigments in algae are..... 3- Heterotrophy is defined as..... 4- Chlorophyll C is characterized by..... 5- Nitrogenase enzyme is inhibited by..... 6- Factor B is formed by..... 7- A continuous culture disadvantage is..... 8- Phycobiliproteins pigments are..... 9- Importance of Fe for algal growth is..... 10- A batch culture advantage is.....

Question 3: Correct the underlined words on the followings (15 marks)

- 1- The chlorophyll is extracted using chloroform and then identified by weighing.
- 2- Zinc and potassium are inorganic elements fused in the nitrogenase enzyme structure.
- 3- <u>Closed</u> algal cultures are easily exposed to contaminations.
- 4- The <u>violaxanthin</u> is the type of phycobiliproteins found in Rhodophyta.
- 5- Euglenophyta members are <u>autotrophic</u> algae while Chlorophyta are <u>auxotrophic</u>.
- 6- The inflow medium is added according to the generation time in **batch culture** systems.
- 7- Continuous cultures are used for mass production process like biodiesel.

Turn the Page On

- 8-Stirring is used to maintain the pH of an algal culture while aeration supplies it with energy.
- 9- Salinity is a controlling factor in fresh water algal cultures.
- 10- FAD and glutathione are needed for nitrogen fixation process.
- 11- In chemotrophy, light energy is converted into chemical energy of ATP and NADPH₂.

Ouestion 4: Explain the mechanism of the following processes: (35 marks)

- 1- Photorespiration via glycolate pathway.
- 2- Nitrogen fixation in Cyanophyta.
- 3- Photodynamic effect and carotenoids pigments in photosynthesis.
- 4- Thiamine requirement in algal growth.
- 5- Formation of vitamin B₁₂ analogues.
- 6- Biological adaptation of algae to minimize photorespiration.
- 7- Growth of algae in continues culture systems.

End of Questions

All Best Wishes

Examiner Prof. Dr. Gehan Ahmed Ismail

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAM (FIRST TERM, JAN. 2023) FOR THE FOURTH YEAR (BOTANY CHEMISTRY)

COURSE TITLE

MUTATIONS AND GENOME CHANGES | COURSE CODE: BO4131

JAN. 2023

TOTAL ASSESSMENT MARKS: 100

TIME ALLOWED: 2 HRS

Please answer all the following questions:

1) Write briefly about the following terms:	(20 marks)
a) Duplicationb) Translocationc) Inversion	
2) Complete the following:	(30 marks)
a) Telomere is defined as b) Acrocentric centromere is c) Centromere is d) The satellites are	•••••••
3) Compare between the following:	(20 marks)
a) Telocentric and metacentic centromeresb) Frameshift mutation and nonsense mutation	
4) Describe each of the following:	(30 marks)
a) Missense mutationb) Photo-reactivation repairc) Types of deletion	

Best wishes,

Examiner:

Dr. Mohamed El-Esawi

		TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY						
	FINAL EXAMINATION for Special Chemistry & Material Science Groups							
1000	COURSE TITLE:	POLYM	ER CHEMISTRY	COURSE CODE: CH 4105				
DATE:	25 JAN 2023	TERM: FIRST	TOTAL ASSESSMENT MARKS: 50 DEGREE	TIME ALLOWED: 2 HOURS				

1) Write the name & structure of monomers for each of the following polymers:

(10 marks, 2 marks for each)

- a) Polycarbonate,
- b) Aliphatic polyamide,
- c) Poly(vinyl chloride),
- d) Polyurethanes,
- e) Epoxy resin.
- 2) Write short notes on the following:

(10 marks, 5 marks for each)

- a) Suspension polymerization techniques,
- b) Phenol-formaldehyde resin.
- 3) How can you prepare the following:

(10 marks, 5 marks for each)

- a) Ion exchange resins,
- b) Block copolymers.
- 4) Write short notes on the following:

(10 marks, 5 marks for each)

- a) Vulcanized rubber,
- b) Isomerization polymerization.
- 5) Choose the correct answers:

(10 marks, one mark for each)

- i) What is the name of the organic compound used to prevent the polymerization of the monomers during storage?
 - a) Accelerator,
 - b) Initiator,
 - c) Inhibitor.
- ii) What are the monomers used for the formation of Bakelite?
 - a) Urea & formaldehyde,
 - b) Melamine & formaldehyde,
 - c) Phenol & formaldehyde.
- iii) What is the type of the initiator used in cationic polymerizations?

- a) Acid,
- b) Base,
- c) Free radical.
- iv) Which of the following is common anionic initiator?
 - a) Benzoyl peroxide,
 - b) Azobisisobutyronitrile,
 - c) Na-metal.
- v) What are the monomers used for the formation of polyurethanes?
 - a) Isobutylene & isoprene,
 - b) Diisocyanate & diol,
 - c) Diisocyanate & diamine.
- vi) What is the type of the polymerization of styrene with BuLi?
 - a) Ring-opening polymerization,
 - b) Condensation polymerization,
 - c) Living polymerization.
- vii) Which is the characteristic of cross-linked polymers?
 - a) Melting on heating,
 - b) Insoluble in all solvent,
 - c) Soluble in organic solvent.
- viii) Which is true regarding addition polymerization?
 - a) Monomers contain three functional groups,
 - b) Monomers contain two functional groups,
 - c) Monomers contain olefinic groups.
- ix) What is the type of the polymerization used for the formation of polystyrene?
 - a) Condensation polymerization,
 - b) Addition polymerization,
 - c) Stepwise polymerization.
- x) Which is the characteristic of thermoplastic s?
 - a) Can be molded,
 - b) Cross-linking between chains,
 - c) Can not be melted.

With best regards,

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY EXAMINATION FOR B. SC. STUDENTS COURSE TITLE: LASER CHEMISTRY DATE: 18TH JANUARY TERM: FIRST TOTAL ASSESSMENT MARKS: TIME: 2 HOURS 50 TANTA UNIVERSITY FACULTY OF SCIENCE CHEMISTRY EXAMINATION FOR B. SC. STUDENTS CH4113 TIME: 2 HOURS

Answer the following questions (10 marks each)

- 1- Tunneling of small particles is an important phenomenon of many chemical applications. Discuss this phenomenon and its application to explain splitting in ammonia vibrational spectral lines, non-linear Arrhenius plots and deviation from kinetic isotope effect.
- 2- The application of molecular rigidity effect on fluorescence efficiency in salmonella detection, DNA quantification and fingerprint modification.
- 3- The technique of thermal lensing is an important application on laser collimation. Draw a time- resolved thermal lensing experimental setup and trace upon using the technique to study singlet oxygen sensitization kinetics.
- 4- Briefly describe each of the following:
 - (a) The technique of polarized fluorescence and its application in studying drugprotein interactions.
 - (b) The technique of single photon counting and its application in lifetime measurement.
 - (c) Laser applications in isotope separation
 - (d) The synthesis of vinyl chloride from 1,2-dichloroethane is an important multibillion industrial process demonstrating the advantages of laser applications. Write the reaction scheme and mention the advantages of laser application in comparison with thermal applications.
- 5 Draw and label each of the following:
 - (a) Ground and the first two excited states in oxygen molecule giving the appropriate notations.
 - (b) Energy levels in He-Ne laser
 - (c) Energy levels in excimer lasers
 - (d) Energy levels in salicylamide as a proton transfer dye laser
 - (e) Energy levels in carbon dioxide lasers

Prof. Dr. El-Zeiny Mousa Ebeid and Prof. Dr. Samy Abdallah El-Daly

Tanta University – Faculty of Science – Chemistry Department Final Exam for Fourth year students (Chemistry, Material Science Section)

Code: CH4123 Course Title: Industrial Chemistry

January 2023

Note: Exam consists of 6 pages

Date: 28/12/2022

Total Assessment Marks: 100

Time Allowed: 2 h

Part I: Organic Industrial Chemistry (50 Marks) تصحيح إليكتروني

	Ch	oose the correct ansi	wer:	<u>-</u> _						
	For	maldehyde is as a feedst	ock f	or industry						
	a.	dyes	b.	detergents	c.	Plastic	d,	explosives	· · · · · · · · · · · · · · · · · ·	e inggoradinga
2.	Del	nydrogenation of methar	ol by	catalytic oxidation is an	indu	strial method for the ma	nufa	cture of		
	a.	Methane	b.	formalin	c.	ethanol	d.	acetic acid		
3.	Cyc	clohexanone is a starting tramadol	mate b.	erial for the synthesis of aspirin		prilocaine	d.	sildenafil	* * *	47 (F)
١.	Liq	uefied petroleum gases	(LPG) consists of	m	ixture				
	a.	pentane and propane			c.	propane and hexane				
	b.	propane and butane			d.	butane and pentane			a j	
5.		are unstable and	also	mprove the anti-knock to	endei	ncies of gasoline				
	a.	Olefins			c.	Sulfur Compounds				
	b.	Paraffins			d.	Aromatics	9%	er, er ir -	\$. F 4	an greye
ó.	Syn	nthesis gas is a mixture o	of							
	a.	CO ₂ & H ₂ O	b.	NH ₃ & O ₂	c.	H ₂ & CO	d.	H ₂ & NH ₃		
7.	Ace	etylation of p-aminopher	nol gi	ves		K 0	ery .	x & 8 =	ž.	
	a.	Pethidine	b.	Paracetamol	c.	Novocain	d.	Aspirin		
3.	Det	ermining the amount of	hydr	ogen required for a comp	ounc	d to be converted into a s	atura	ted		
	a.	acid hydrolysis			c.	saponification Value				
	b.	cracking test			d.	unsaturation test			8 6 V	(1980) ·
).		is the most com	non :	solvent used for vegetabl	e oil	extraction				
	a.	Ethyl acetate	b.	Hexane	c.	Ethanol	d.	Methanol		
	ACM\$	A CONTRACTOR OF THE PARTY OF TH	200505	environd State State Andrews	0.0070				(a) (b) (b)	
				ىقحە م	ب الص	من فضلك إقا				

10.	Ble	aching process in oil ext	ractio	on is carried out using				
12.	a.	activated clay	9 (1 ×		c.	hydroperoxide		
	b.	sodium hydroxide			d.	mineral acids		
11.	••••	is the milligrams	of po	ot. hydroxide required to	conv	ert one gram of fat into g	glyce	rin and salt
(s) (8	a.	Unsaturation number			c.	Saponification process		
	b.	Iodine number			d.	Saponification number		
12.		action of ethyl-4-aminol shod for the preparation of			io)-et	hanol in presence of so	odiun	n ethoxide is a synthetic
	a.	Novocain	b.	Aspirin	C.	Prilocaine	d.	Lidocaine
13.	Oct	ane number could be cal	culat	ed using as st	anda	rd mixture		
	a.	n-heptane and iso-octar	ņe		c.	n-octane and benzene		
	b.	n-heptane and iso-hept	ane		d.	n-octane and n-hexane		
14.	In t	he synthesis of tolycaine	, the	used amine compound is				
	a.	triethyl amine		methyl amine	c.	diethyl amine	d.	pyridine
15.		is an undesirable		ponent in petroleum bec	ause	of its strong offensive of	dor	
	a.	Oxygen	b.	Nitrogen	c.	Acetylene	d.	Sulphur
16.	In s	oap manufacturing proce	ess,	is added as wa	ter so	ftener		
	a.	brine solution			c.	sodium carboxymethyl	cellu	lose
	b.	zeolite			d.	linear alkylbenzene sul	phoni	ic acid
17.	In v	egetable oil extraction, s	olver	nt extraction method is ap	pplie	d to seeds with low oil co	onten	t such as
·	a	soybeans	b.	olive oil	C.	sunflower	d.	sesame oil
18.	One	stage in vegetable oil pr	oces	sing				
	a.	sulphonation	b.	spray drying	c.	degumming	d.	slurry making
.19.	One	of the most common oil	s use	d for soap manufacturing	g is .			
	a.	corn oil	b.	coconut oil	c.	sesame oil	d.	sunflower oil
				صفحه	قلب الد	من فضلك إ		

20.	Whe	en 2,6 dimethylaniline	reacts	with chloroacetyl chlor	ide fo	llowed by reaction with	dieth	yl amine g	gives			
	a.	pethidine	b.	Lidocaine	c.	cocaine	d.					
								# 2	9, 22	WW.	15, 1 m 21 1 1 1 1 1 1	<i>,</i> , ,
21.	The	spent lye in soap manu	ufactui	ing process is	•							
	a.	brine solution layer			c.	brine/NaOH layer						
	b.	NaOH/H ₂ O layer			d.	brine/glycerin layer						
22.	Sulp	ohapyrimidine is used a	as					+ (2 ₃) 2 ₃	MCMOVE 0	9° . °		rop
	a.	antibacterial agent			c.	anticancer agent						
	b.	anesthetic agent			d.	anti-inflammatory age	nt					
3. In	veget	table oil extraction, Na	OH is	used for					1 7 - 1			
	a.	separation of glycerol	l		c.	soap formation						
	b.	neutralization of fatty	acids		d.	b,c						
.4. Dı	uring		id dete	rgents, raw materials a	re mix		40.3	40 4			· alm last	٠.,
	a.	postdosing step			c.	slurry making step					VI. P0400 VII. 4.74	
	b.	spray drying step			d.	none of these						
25. Pa	ılmitic	c acid is										
	a.	CH ₃ (CH ₂) ₁₂ COOH			c.	CH ₃ (CH ₂) ₁₀ COOH	***		, × 00t			Sec. 1.79
	b.	CH ₃ (CH ₂) ₁₆ COOH			d.	none of these						
26.	Al	kylation of barbituric a	icid giv	/es								
	a.	hypnotic drug			c.	antibacterial drug	20					
	b.	anticancer drug			d.	antifungal drug				ena e ^{le} co	W 1 K)	10
27.	Ac	cording to inorganic h	ypothe	sis, petroleum could be	form	ed in the form of						
	a.	carbides			c.	hydrocarbons						
	b.	carbon dioxide			d.	a,b		- 10	89j	ŝ	4.4.	
	28.	is used to	reduce	engine knocking and in	ncreas	e the fuel's octane rating	g	: 60				
	a.	LPG			c.	Anti-knock agent						
	b.	Octane number			d.	None of these						
				حه	ب الصف	من فضلك إقلد		e sign	- -2 x		>	(A) 17.0

29.	For $C_{14} - C_{20}$ fraction, it is used for						
a.	jet fuel	c.	lubricating oils				
b.	diesel fuel	d.	ships fuel				
30.	During Cativa process for the production of acetic acid	,	is used as catalyst				
a.	Platinum	c.	Ruthenium				
b.	Rhodium	d.	Iridium				
31.	Phenylglycine is a starting material for the synthesis of	·					
a.	Ampicillin	c.	Amoxicillin				
b.	Piprocaine	d.	Novocaine				
32. Tedious, , energy sapping, rough, largely unscientific, inefficient, and yielding poor quality extracted oil. All these are in accordance with							
a.	conventional method	c.	solvent extraction method				
b.	mechanical expression method	d.	old traditional method				
33.	Partial oxidation of methane gives						
a.	H ₂ O	c.	Syn-gas				
b.	CO ₂	d.	none of these				
34.	Sulfonation of acetanilide followed by reaction with 2-	amin	opyrimidine and hydrolysis gives				
a.	Sulphapyrimidine	c.	Sulphanilamide				
b.	sulphathiazole	d.	Sildenafil				
35. eth	Reaction of benzyl cyanide with methyl-bis(2-chloroet anol gives	hyl)a	mine followed by hydrolysis and esterification with				
a.	Tramadol	c.	Ibuprofen				
b.	Pethidine	d.	Sildenafil				
36.	In vegetable oil processing, degumming process is carr	ied o	ut using				
a.	glycerol	c.	hot water				
b.	Phosphoric acid	d.	sodium hydroxide				
	سقحه	لب الم	من فضلك إق				

	n viscous rayon production, wood pulp is treated with ilfide to form	aque	ous sodium hydroxide then treated with carbon
a.	Formaldehyde	c.	Acetic acid
b.	Methanol	d.	Xanthate
38. (One example for unsaturated fatty acids is		
a.	Lauric acid	c.	Palmitic acid
b.	Myristic acid	d.	none of these
	When propene reacts with chlorine and hypochlorous a primed	acid f	followed by hydrolysis with sodium hydroxide
a.	Glycerol	c.	Acetic acid
b.	Methane	d.	Urea-formaldehyde resin
40. I	Deodorizing step in vegetable oil refining is carried ou	it to r	emove volatile components, mainly
a.	soap	c.	aldehydes & ketones
b.	Glycerol	d.	free fatty acids

Mark $(\sqrt{})$ or (\times) (10 Marks)

- 1- In oil refining, small amount of NaOH is added to remove the remaining phospholipids.
- 2- Lidocaine is considered as a strong antibiotic.
- 3- Methane is an undesirable component because of its strong offensive odor, corrosion, air pollution by some of its compounds.
- 4- In oil refining, bleaching process is done by the addition of citric acid.
- 5- Brine solution is used during soap manufacturing for soap neutralization.
- 6- The starting material for pethidine preparation is aniline hydrochloride
- 7- The saponification process is an exothermic process.
- 8- Detergents are structurally like soaps but differ in the water-soluble part.
- 9- Aspirin inhibits the production of cell walls of bacteria.
- 10-Olefins are unstable and improve the anti-knock tendencies of gasoline.

من فضلك إقلب الصفحه

Part I: Inorganic Industrial Chemistry (50 Marks)

Question one:

- (A) Describe with chemical equations the reactions that occur to produce Only Two of the following:
- 1. H₂SO₄ by contact process
- 2. H₃PO₄ by wet process.
- 3. Syn gas by autothermal reforming of methane.
- (B) Mention three uses of each of the following (H₂SO₄ H₃PO₄ Syn gas).

Question two:

- (A) In the production of ammonia by Haber process in industry
 - 1) write the balanced chemical equation for the manufacture of ammonia.
 - 2) How much hydrogen would be in 400 liters (L) of gaseous mixture.
- (B) Choose the correct answer:
- 1- Carrying out this reaction at high temperature in the presence of a catalyst is in order to......
 - a) Speed up the conversion reaction to reach equilibrium soon, even though with low amount of ammonia
 - b) Increase the conversion to ammonia in each pass

 - d) b and c
- 2- The reaction 2NaCl + $2H_2O \rightarrow 2NaOH + Cl_2 + H_2$ is
 - a) Oxidation-reduction reaction
 - b) Electrochemical reaction.
 - c) Used in industry for coproduction of Cl₂ and caustic soda.
 - d) All the above.
- 3- In industrial production of phosphoric acid by the wet process, the crushed phosphate rock (appatite) is acidified with phosphoric acid before adding sulphuric acid. This is to prevent
 - a) Formation of soluble salts such as MgSO4 or iron sulphate in the produced phosphoric acid solution.
 - b) precipitation of other salts with gypsum.
 - c) formation of the Plaster gypsum layer on the surface of the crushed appatite.
 - d) all the above three
- (C) A plant that consumes 1170 tons of NaCl produces how many tons of NaOH.
- (D) Describe the main uses of NH3 Cl2 H2.

إنتهت الأسئله كل الأمنيات بالتوفيق والنجاح

Prof. Dr Samer Kandel

Dr. Hamada Mandour