TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY Examination for 4th Year Biochemistry Students COURSE TITLE: Biological Oxidation DATE: 25 - 1- 2023 COURSE CODE: BC4117 TERM: FIRST TERM MARKS: 50 TIME ALLOWED: 2 HOURS

I. Show by diagram: (20 Marks)

- 1. Some electrons from cytosolic NADH transported into the mitochondria to enter the electron transport pathway by two different shuttles, explain.
- 2. Cyclic and Z-scheme phosphorylation in green plants.
- 3. Nitric oxide synthetase and role of NO as a vasodilator in response to neurotransmitters.
- 4. Calvin cycle.
- 5. Enzymatic antioxidant defense mechanism.

II. Discuss the following questions: (20 Marks)

- 1. Biosynthesis of nitric oxide and its protective and cytotoxic effects.
- 2. ATP synthase complex and its molecular mechanism of action.
- 3. Oxidative stress causes damage to three main biological components, explain. And mention the disorders that could be associated with it.
- 4. Chemiosmosis and uncouplers.
- 5. Mechanism of oxidative phosphorylation and the order of the respiratory chain.

III. Complete the following sentences: (10 Marks)

> Best Wishes Prof. Dr. Karim Samy

CALL I	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY					
	FINAL EXAMINATION for Special Chemistry & Material Science Groups					
	COURSE TITLE:	POLYMER CHEMISTRY		COURSE CODE: CH 4105		
DATE:	25 JAN 2023	TERM: FIRST	TOTAL ASSESSMENT MARKS: 50 DEGREE	TIME ALLOWED: 2 HOURS		

1) Write the name & structure of monomers for each of the following polymers:

(10 marks, 2 marks for each)

- a) Polycarbonate,
- b) Aliphatic polyamide,
- c) Poly(vinyl chloride),
- d) Polyurethanes,
- e) Epoxy resin.
- 2) Write short notes on the following:

(10 marks, 5 marks for each)

- a) Suspension polymerization techniques,
- b) Phenol-formaldehyde resin.
- 3) How can you prepare the following:

(10 marks, 5 marks for each)

- a) Ion exchange resins,
- b) Block copolymers.
- 4) Write short notes on the following:

(10 marks, 5 marks for each)

- a) Vulcanized rubber,
- b) Isomerization polymerization.
- 5) Choose the correct answers:

(10 marks, one mark for each)

- i) What is the name of the organic compound used to prevent the polymerization of the monomers during storage?
 - a) Accelerator,
 - b) Initiator,
 - c) Inhibitor.
- ii) What are the monomers used for the formation of Bakelite?
 - a) Urea & formaldehyde,
 - b) Melamine & formaldehyde,
 - c) Phenol & formaldehyde.
- iii) What is the type of the initiator used in cationic polymerizations?

- a) Acid,
- b) Base,
- c) Free radical.
- iv) Which of the following is common anionic initiator?
 - a) Benzoyl peroxide,
 - b) Azobisisobutyronitrile,
 - c) Na-metal.
- v) What are the monomers used for the formation of polyurethanes?
 - a) Isobutylene & isoprene,
 - b) Diisocyanate & diol,
 - c) Diisocyanate & diamine.
- vi) What is the type of the polymerization of styrene with BuLi?
 - a) Ring-opening polymerization,
 - b) Condensation polymerization,
 - c) Living polymerization.
- vii) Which is the characteristic of cross-linked polymers?
 - a) Melting on heating,
 - b) Insoluble in all solvent,
 - c) Soluble in organic solvent.
- viii) Which is true regarding addition polymerization?
 - a) Monomers contain three functional groups,
 - b) Monomers contain two functional groups,
 - c) Monomers contain olefinic groups.
- ix) What is the type of the polymerization used for the formation of polystyrene?
 - a) Condensation polymerization,
 - b) Addition polymerization,
 - c) Stepwise polymerization.
- x) Which is the characteristic of thermoplastic s?
 - a) Can be molded,
 - b) Cross-linking between chains,
 - c) Can not be melted.

With best regards,

	TANTA UNIVERSITY		ACULTY OF SCIENCE DEPARTM	DEPARTMENT OF CHEMISTRY	
	EXAMINATION FOR LEVEL- 4 STUDENTS - SPECIAL CHEMISTRY SECCTION				
20.	COURSE TITLE:			COURSE CODE: CH4107	
DATE:	JAN. 14, 2023	TERM : FIRST	TOTAL ASSESSMENT MARKS: 50		

Answer the following questions:-

Q1:- Write down on the following:

(12 Marks)

a- Lactic acid and Alcohol fermentations.

(4 Marks)

b- " PPP is an alternative pathway for degradation of D-glucose via Five carbon sugars and generation of NADPH,H+". Write the non-oxidative pathway. (4 Marks) c- The biosynthetic pathway of Pantothenic Acid. (4 Marks)

Q2:- Answer the following:

(14 Marks)

a- Explain by equations how the Gluconeogentic pathway takes place bypassing the irreversible steps of glycolysis". (4 Marks)

b-Write the biochemical pathway including enzymes, coenzymes and the reaction equation of the conversion of α -Ketobutyric acid into Propionyl-CoA.

c- Choose the correct answer: (5 Marks)

The reaction between Glutamic Acid and Pyruvic Acid in presence of PLP is catalyzed by: i- Deaminase. ii- Transmethylase. iii- Aminotransferase. iv- Monoamine oxidase. (Write the reaction equation and the role of PLP).

Q3:-

(10 Marks)

a- Write the pathway of Glycogenolysis.

(4 Marks)

b- Explain by equations the absolute and bond specificity of enzymes. (4 Marks) c- Choose the correct answer in the conversion of Pyruvic Acid into OAA the reaction is catalyzed by: (2 Marks)

i- Deaminase.

ii- Decarboxylase.

iii- Dehydratase.

iv- Carboxylase.

(Write the reaction equation and Coenzyme)

Q4:- Explain by equations the following:

(14 Marks)

a- Glyceraldehyde-3-phosphate forms Pyruvic acid.

(5 Marks)

b- Galactose metabolism requires Glycosyl epimerase enzyme.

(4 Marks)

c- The Citric Acid Cycle (CAA), calculating the ATP formed.

(5 Marks)

GOOD LUCK Dr. Yehia A. Hafez

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY EXAMINATION FOR B. SC. STUDENTS COURSE TITLE: LASER CHEMISTRY DATE: 18TH JANUARY TERM: FIRST TOTAL ASSESSMENT MARKS: TIME: 2 HOURS 50 TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY EXAMINATION FOR B. SC. STUDENTS CH4113 TIME: 2 HOURS

Answer the following questions (10 marks each)

- 1- Tunneling of small particles is an important phenomenon of many chemical applications. Discuss this phenomenon and its application to explain splitting in ammonia vibrational spectral lines, non-linear Arrhenius plots and deviation from kinetic isotope effect.
- 2- The application of molecular rigidity effect on fluorescence efficiency in salmonella detection, DNA quantification and fingerprint modification.
- 3- The technique of thermal lensing is an important application on laser collimation. Draw a time- resolved thermal lensing experimental setup and trace upon using the technique to study singlet oxygen sensitization kinetics.
- 4- Briefly describe each of the following:
 - (a) The technique of polarized fluorescence and its application in studying drugprotein interactions.
 - (b) The technique of single photon counting and its application in lifetime measurement.
 - (c) Laser applications in isotope separation
 - (d) The synthesis of vinyl chloride from 1,2-dichloroethane is an important multibillion industrial process demonstrating the advantages of laser applications. Write the reaction scheme and mention the advantages of laser application in comparison with thermal applications.
- 5 Draw and label each of the following:
 - (a) Ground and the first two excited states in oxygen molecule giving the appropriate notations.
 - (b) Energy levels in He-Ne laser
 - (c) Energy levels in excimer lasers
 - (d) Energy levels in salicylamide as a proton transfer dye laser
 - (e) Energy levels in carbon dioxide lasers

Prof. Dr. El-Zeiny Mousa Ebeid and Prof. Dr. Samy Abdallah El-Daly