W 15	Tanta University, Faculty of Science, Chemistry Department			
of the same	Examination for Fourth Level (Credit hours) Students			
	Course Title	Pesticides	Course Code: CH4119	
Date:	4 January 2023	Total Asssessment Marks: 50	Time Allowed: 2 hrs	

I) Write about each of the following: (10 Ms):

- 1. The metabolism of DDT
- 2. Merits and demerits of organophosphorus pesticides
- 3. The metabolism of Carbofuran

II) Complete with chemical equations the following scheme and name all products: (10 Ms)

III) Write one method for preparation of the following pesticides: (10 Ms)

1. Nicotine

- 2. Ehyl chloro benzilate
- 3. Trialkyl tin hydroxide

4. Bis(4-chlorophenyl) sulphonate

5- Sodium fluosilicate

IV) Mark ($\sqrt{\ }$) or (\times) for the following statements (10 Ms):

1.	The complete breakdown of Pesticides forms carbon dioxide, water and minerals	()
2.	Nicotine is les toxic than its salts	()
3.	Pesticides applied indoors usually breakdown at faster rate due to the lack of sunlight	()
4.	γ -Isomer of gammexane is the most toxic isomer to the insect	()
5.	Thiolo isomer of parathione is more effective as insecticides than the thiono isomer	()
6.	Carbamates are the newest group of synthetic compounds with high insecticidal activity	()
7.	Acute toxic effect arises from long term exposure to small quantities of pesticides	()
8.	Contact poison depends on the action of stomach and consumed through mouth parts	()
9.	Methyl parathion is hydrolyzed 4.3 times slower in alkali than parathion	()
10.	Bordeaux mixture is a mixture of calcium sulfate and copper oxide	()

See the second page

1. Reaction of p-chlorob	enzaldehyde with nitroeth	nane followed by chloro	benzene/H ₂ SO ₄ gives:
a) DDD	b) Perthane	c) Prulan	d) Bulan
2. Chlorination of cyclo	hexene followed by Effect	of heat gives:	*
a) 1,2,3-trichloro benze	ene	b) 1,2,4-trichloro benzer	ne
c) 1,2,5-trichloro benze	ene	d) 1,3,5-trichloro benzer	ne
3. Action of sulphoryl cl	hloride/benzoyl peroxide (on chlordene follwed by	oxidation gives:
a) Heptachlor epoxide	b) Chlordane	c) Endrin	d) Aldrin
4. Reaction of cyclopent	adiene with acetylene foll	owed by HCCP gives:	
a) Endrin	b) Heptachlor	c) Aldrin	d) Chlordane
5. Epoxidation of carba	ryl followed by hydrolysis	gives:	
a) Carbaryl epoxide	b) Cis-diol of cabaryl	c) Gem-diol of cabaryl	d) Trans-diol of cabaryl
6. Treatment of 4,4-dich	nlorobenzophenone with G	Frignard reagent follow	ed by conc. H ₂ SO ₄ gives:
a) 1,1-bis(4-chloropher	nyl)ethane	b) 1,1-bis(4-chlorophe	enyl)ethanol
c) 1,1-bis(4-chlorophenyl)ethene d) 1,1-bis(4-chlorophenyl)			enyl)ethenol
7. Hydrolysis of malathi	ion gives:		100011
a) Dimethyl thiophosphoric acid + diethyl thiolo succinate b) Diethyl thiophosphoric acid + dimethyl thiolo succinate			
c) Dimethyl thiophosphoric acid + dimethyl thiolo succinate d) Diethyl thiophosphoric acid + diethyl thiolo succinate			acid + diethyl thiolo succinate
8. Reduction of DDT wi	th Zn-dust followed by tro	eatment with alc. KOH	gives:
a) 1,1-bis(4-chloropher	nyl)-2-chloro propane	b) 1,1-bis(4-chloroph	nenyl)-2-chloro ethane
c) 1,1-bis(4-chloropher	nyl)-2-chloro propene	d) 1,1-bis(4-chloroph	nenyl)-2-chloro ethene
9. Treatment of diethyl	chlorophosphate with trie	thyl phosphate followed	l by hydrolysis gives:
a) Dimethyl phospho	ric acid	b) Diethyl phosphor	ic acid
c) Triethyl phosphori	ic acid	d) Phosphorous acid	
10. Dehydrochlorination	n of DDT followed by CrC	3 oxidation gives:	
a) p,p-Dichlorobenzo	phenone	b) p-chlorobenzoph	nenone
c) Bis(4-chlorophenyl	l)-1-chloroethane	d) Bis(4-chloropher	nyl)ethanoic acid
	With Ra	st Wishes	

V) Choose the correct answer (10 Ms):

Prof. Dr. Mohamed Azaam

Dr. Atif El-Gharably

AGE 1	Tanta U	niversity, Faculty of Science,	Department of Chemistry
	[4 th Level	Final Exam of Solid Stat Chem-Bio, Micro, Bot, Ent.	te Chemistry Geo. Zol. and Mat Science
	course Title.	ب المددوجة – Sound State Chemistry	جميع الشيا Code: CH4143
2400. 21 oanuary -2023 1		1 st Semester	Time: 2 Hours
Part(1	()		30 Mark

Answer the following:

- QI. True or False (\sqrt{x}), and if it is false correct it:20 Marks
 - 1) Graphite is Sp² hybridization and good insulator.
 - 2) Deliquescent materials are not vapor absorption matter.
 - 3) Stoichiometric defects are belonging to point defect type.
 - 4) Covalent crystals are bonded to each other by ionic bonds.
 - 5) Interstitial defects are belonging to stoichiometric ionic solids.
 - 6) Metal deficient defects are belonging to stoichiometric point defects.
 - 7) Smectic liquid crystal phase is not ordered crystals.
 - 8) Monoclinic crystals are maximum symmetry crystals type.
 - 9) Conduction in solids is hole mechanism-only.
 - 10) Liquid crystals (LC) are not obeying Bragg's law for X-ray diffraction.
 - 11) Conductors have no energy gab (Eg).
 - 12) n-type semiconductors are electron conduction mechanism.
 - 13) Diamagnetic materials have no unpaired electron.
 - 14) Polymerized crystalline arrays obey Bragg's law.
 - 15) Potassium chloride is belonging to Ionic solids.
 - 16) Population-inversion is the base of Laser-generation.
 - 17) Semiconductors conduction is enhancing via raising of temperature.
 - 18) Sol-Gel technique produces a microstructure better than other techniques.
 - 19) Annealing rates controlled in the formed crystalline phases.
- 20) Volume of lattice cell is greater than volume of atoms present within lattice.

			112
25 F			STATE OF
خلف الورقه	5- KC - G*	ate with the con-	
	************	تابع باقى الاستلك	Constitution of the last
	************	تابع باقى الاسنله	THE REAL PROPERTY.

QII. Write the Scientific Term/or Sentence equal to each of the following; (10 Marks)

- Allotrope
- * Type of defects are present specially in ionic solids.
- * Laser.
- * The smaller ions are dislocated from its sites to interstitial sites.
- * Bragg's law.
- * Materials with the same chemical composition but differ in crystal form.
- * Capability and efficiency of crystal form to insert more atoms.
- * The zone in matter controlled in conduction mechanism.
- * Application of electricity to produce chemical reaction.
- * Crystalline Polymorphism.

Part (II)......20 Marks

QIII. Write a brief account on, Only Five Items:(10 marks)

- III.1. Photo-Voltaic Devices & Semiconducting Lasers.
- III.2. Polymorphism in iron/carbon.
- III.3. Atomic Packing efficiency (APF).
- III.4. Doping in semiconductors (n-type and p-type) semiconductors.
- III.5. Techniques applied for solid state synthesis.
- III.6. Different phases of liquid crystal.

QIV. Compare with drawing between each couple of the following;.....(10 Marks)

- 1. Crystalline and Amorphous solids.
- 2. Diamond and Graphite.
- 3. Frenkel and Schottky defects.
- 4. Polymorphism in carbon and calcium silicates.
- 5. Linear defects, Edge and Screw dislocations.

Best Wishes
Prof.Dr. Khaled M. Elsabawy
Professor of Materials Sciences
2023

Final Exam of Solid State Chemistry 2023- Examiner Prof.Dr. Khaled M. Elsabawy (2023)

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY

Double Majors Students

COURSE TITLE: Bioinorganic Chemistry C

2023 TERM: 1ST TERM TOTAL ASSESMENT MARKS: 50

CODE: CH4159

DATE: 23 Jan., 2023

TIME ALLOWED: 2 HOURS

Answer all the following questions :-

1- Choose the most correct	et answer from the	available selections:	(20 Marks)
1 is insolu	able at physiological	pH and	is dangerous if free
because it forms free	radicals.		is dangerous if free
A) Ferric (3+) and ferro	ous (2+), respectively	B) Ferrous (2+) at	nd ferric (3+), respectively
C) Cobalt (2+) and coba	alt (3+), respectively	D) Conner (2+)	and copper (1+), respective
2- Magnesium has the abi	lity to compete with	D) copper (21)	for binding sites on protein
and membranes.	my to compete with	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	for binding sites on protein
A) iron	B) calcium	C) sodium	D) potassium
3 poisoning ca	n lead to neurologica	l disease and kidney	failure if left untreated
	B) Mercury		
4 comes from a lack	of vitamin B-12 (w	hich contains a cobal	t complex called cobalamin
A) Anemia	B) Pernicious anemia	C) Alzheimer	D) Male:
5 ar	e all paramagnetic n	netals that are able to	D) Malaria to alter the tissue relaxation
times and produce a co	ntrast image	netals that are able t	o after the tissue relaxation
A) Cd(I), Hg(II), and		D) C (II) D	1 2770
	one inc		b(II), and Se(III)
C) Gd(III), Fe(III), a		• D. Neuman Developing	
6 enters the	plasma where it is b	ound to histidine and	d to serum albumin.
A) Iron	B) Copper	C) Nickel	~) ====
7 age	ents are commonly u	sed in metal toxicity	treatment.
A) Oxidizing	B) Reducing	,	D) Both A and B
8- Sodium has	s been used since the	early 20th century to	treat rheumatoid arthritis.
A) vanadate	B) sulfate	C) chloride	D) phosphate
9 complexes conta	ining gold, silver, ar	nd copper have good	anti-cancer properties
A) Carbonyl	B) Chlorate	~\	D) Cyanide
			, , , , , , , ,

10 has the abi	lity to form chela	tes with important	intracellular anionic-ligands,
especially ATP.			amonie nganas,
A) Sodium	B) Potassium	C) Strontium	D) Magnesium
11 is largely associated	iated with chloric	le and bicarbonate	in regulation of acid-base
equilibrium.			gamenta or and out
A) Potassium	B) Sodium	C) Zink	D) Calcium
			inorganic chemical behavior,
but they are very differen	nt in their biologica	l activities.	o man o charlon,
A) sodium and pota	ssium	B) sodium and iro	n
C) potassium and ir			
13 is a mineral found	l in high concentra	tion in the body that	n any other mineral.
	B) Potassium		
14- Metal complexes can be	used in diagnostic		
A) for radioisotope imaging	B) as contrast a	agents C) A and	B D) none of A and B
15 utilized chiefly	in the synthesis of	Hb, myoglobin and	certain respiratory enzymes
A) Iron B)) Chromium	
16 of a metal cente		cal reactivity as a re	dox center in biomologylar
A) Spin state	3) Electronic struct	ture C) A and B	D) Density
17 based compound	s have been shown	to specifically affe	ct head and nack towns
A) Thorium		C) Plutonium	
18- In intestinal mucosal cell	l, copper is associa	ated with low mole	D) I latilitill
protein called		Will low moles	odiai weight metal binding
A) hemosiderin	B) ferritin	C) metalothionein	D) allarmain
19 carbonate of	(E	nhate hinder in patie	D) albumin
kidney disease.	Paros	place officer in park	one surrering from enronic
A) Iron	B) Copper	C) Lanthanum	D) 7:
20 poisoning ca			D) Zinc
A) Sodium and potassium		SERVICE STORY THE VIEW	
	-, -mi and 110	an concluin	D) Lead and cadmium

II-	Put a sign ($$) in front of correct sentence <u>or</u> a sign (X) in front of wrong one. (10 Marks)
1-	Metal complexes can be used in medicinal applications for only radioisotope imaging (from
	their emitted radiation). ()
2-	Increased serum calcium is found in hyperparathyroidism patients, multiple myeloma,
	osteolyts tumors in the skeleton. ()
3-	Potassium functions are different from sodium functions in the extracellular fluid. ()
4-	Selenium has been found to be essential for certain animals, such as cattle, and chicken. ()
5-	The reactivity of a metalloprotein is not affected by its coordination environment and
	molecular geometry. ()
6-	Recently metals have been used to treat cancer, by specifically attacking cancer cells and
1	interacting directly with DNA. ()
7- :	Known metalloenzymes number do not exceed hand fingers, until now. ()
	Factors affecting absorption of magnesium are different from those affecting calcium
á	absorption. ()
9-]	fron porphyrins are present in some intracellular enzymes; respiratory enzyme systems:
(cytochrome oxiddase, catalase, and peroxidase. ()
	The bone crystals consist of calcium phosphate hydroxyapetite Ca ₁₀ (PO ₄) ₆ OH ₂ .()

III- Explain each of the followings:

(20 Marks)

- 1- How does magnesium influences the activity of enzymes? (4 Marks)
- 2- Why has Mo (4d) rather than Cr (3d) been utilized more biologically? (4 Marks)
- 3- Iron absorption and transport in human body. (4 Marks)
- 4- The importance and function of inorganic phosphate in biological systems. (4 Marks)
- 5- Many metals play important roles in medicinal diagnosis. (4 Marks)

With Our Best Wishes

Examiners: Prof. Mohamed Gaber and Prof. Abdalla Khedr

when the column and t

ž.

· ·