

Tanta University, Faculty of Science, Department of Botany Final Examination for (First level) Students of Geology

COURSE TITLE: General Botany

COURSE

CODE: BO 1121

DATE: 12 JANUARY, 2023

TERM: FIRST

TOTAL ASSESSMET MARKS: 100 TIME ALLOWED: 2HOURS

Section A (Plant Morphology, 50 Marks)

First question:

<u>A-</u>	Write the Scientific term for each of the following:- (20 Marks, 2 each)	
1.	Is a mature fertilized ovule formed after fertilization with a pollen grain ()	
2.	Type of the germination where the cotyledons are pushed above the ground ()	
3.	Roots that develop from any other part other than the radicle ()	
4.	Type of roots are formed from the lower nodes of the stem near the soil surface as secondary	
	growth root ()	
5.	Roots arise on the shoots to absorb water vapor from air and not differentiated into primary root	
	or secondary roots ()	
6.	Stems that not able to grow in erect position without support due to the absence of sufficient	
	mechanical tissues ()	
7.	Type of buds that are located on sides or above the lateral bud ()	
8.	The type of stem branching where apical bud modified into permanent organ and the plant	
	complete its growth from the lateral bud ()	
9.	Stems are located under the ground to perform additional function such as storage ()	
10.	Pair of appendages that may grow around the leaf base ()	
	B- Mark each correct statement with (√) and each false one with (×) (10 Marks, 1 each)	
1-	Reticulate venation is a type of venation is restricted to the monocot plant	()
2-	Cauline is a type of leaves arrangement whereas three or more leaves arise from the same node	()
3-	Compound leaves are those in which the leaf blade is divided into number of leaflets	()
4-	Prophylls leaves are the first green leaves in the hypogeal germination	()
5-	Leaves are provided with veins that help in conduction of food, water and minerals	()
6-	In case of radical arrangement, the leaves arise from the root	()
7-	Winter buds are composed of small leaves covered with scaly leaves	()
8-	Creeping stems are give adventitious roots from nodes near the soil	()
9-	Root system is negatively geotropic and positively phototropic	()
10-	Shoot system is positively hydrotropic and negatively phototropic	()

Tanta University, Faculty of Science, Department of Botany

Final Examination for (First level) Students of Geology COURSE TITLE:

General Botany

COURSE

CODE: BO 1121

DATE: 12 JANUARY, 2023

TERM: FIRST

TOTAL ASSESSMET **MARKS: 100**

TIME ALLOWED:

2HOURS

Second Question

Choose the correct answer to the following questions: - (20 Marks,	2	each	1)
	~		-

1-	The embryonic	c axis be	low the	point of	attachment	of the	cotyledon
----	---------------	-----------	---------	----------	------------	--------	-----------

Epicotyl ab- Hypocotyl

c- Plumule

d- root

2- It is a modified subterranean stem that is usually found underground and divided into nodes and internodes often give adventitious roots and shoots from its nodes

a-Rhizome b- tubers

c-bulbs

d- corms

3- It is a weak stem that form tendril to expose its leaves to the sun

Twining stem

b-climbing stem

c- running stem

d- creeping stem

4- It is a stem which get transformed into a leaf like structure and become flattened and rich with chloroplast

a-Succulent stem b- spiny stem c- leafy stem

d- storage stems

5- The stem that is able to carry its branches, leaves, fruits upwardly according to it has strong mechanical tissues

Prostrate stem

b- erect stem

c- twining stem

d- climbing stem

6- The leaf base, which is board and surround the dwarf stem

b- short sheathed

c-long sheathed

d-pulvinus

7- This is the largest, most important, green and dorsi-ventrally flattened part of the plant

a- Leaf petiole

b- leaf margin

c- leaf stipules

d- leaf blade

8- Compound pinnate leaflets that are arranged on both lateral sides of the midrib like a feather and terminated with only one leaf

a- Paripinnate

b- imparipinnate

c- trifoliate

d-compound palmate

The type of leaf blade which is divided into portion having a large terminal lobe and the other lobes decrease gradually towards the base

a- Lyrate lobed

b- pinnately lobed

c-palmately lobed

d-compound blade

10- Adventitious roots are developing from

a- Radicle

b- seed

c- stems

d- hypocotyl

Tanta University, Faculty of Science, Department of Botany

Final Examination for (First level) Students of Geology COURSE TITLE:

General Botany

COURSE

CODE: BO 1121

DATE: 12 JANUARY, 2023

TERM: FIRST

TOTAL ASSESSMET **MARKS: 100**

TIME ALLOWED:

2HOURS

Section B (Plant Anatomy, 50 Marks)

Third Question

A- Write the scientific term in front of the following sentences:- (20 Marks)

- It is composed of Trachids, vessels, parenchyma and fibers (....)
- 2- They are Living, storage and thin wall tissue (.....)
- It is differentiated into Cytoplasm and nucleus (....)
- 4- It is a watery, gelatinous, semi-transparent fluid found in eukaryotic and prokaryotic cells (.....)
- 5- The living cell organelle responsible for energy production (......)
- 6- They are used for the exchange of gases in between the plant and atmosphere (....)
- 7- Non-living tissue, their cell walls are lignified and have no intercellular spaces
- 8- It is formed by the condensation of glucose and consist of layers around hilum (....)
- 9- It is a network extends from the nucleus to the margins of the cell and responsible for transport compounds from one part to the other inside the cell (\ldots)
- 10- The aqueous solution containing organic and inorganic substances (.....)

B- In a table, Compare between: - (10 Marks)

- 1- Calcium carbonate and calcium oxalate
- 2- Ribosomes and lysosomes

Fourth Question: -

Give short note on :- (20 Marks)

- 1- Types of vascular bundles
- 2- Types of plastids
- 3- The dermal tissue and function of epidermis
- 4- Simple permanent tissues

With my Best Wishes Dr. Walaa Abd Elmegeid

	TA
<u>م</u>	NTA UNIVERSITY
ener	9
al C	W
nemi	RS
stry	YT
IFin	Y - FACULTY OF SCIENC
al ex	CUI
am	YT.
for th	N.
ie Fi	SCI
rst-y	ENC
ear s	E-
tude	CE- CHEMISTR
nts (MIS
Geo	R
logy	Y DE
General Chemistry I Final exam for the First-year students (Geology Section)	PA
ion)	RTN
	EZ
- 1	

ووز به على (PART I & P ووز به المحددة في ا	Date:01 January 2023 Total marks: 150 PART II) المتحان مكون من جزيور (120 marks, 4 marks each) Correct? C. magnesium, Mn D. iron, Ir d 7854 kg, the total has significant D. 4 When the pressure is 91.4 atm, the C. 9.26x10 ⁷ torr D. 9.26x10 ⁵ kPa An equivalent temperature would D. 297.3 K mula, D. 297.3 K mula, D Cu ₂ NO ₂	A. P. B. P. 10. Aque A. ac A. ac B. al 11. Both A. p. C. el 12. What A. 1. 13. Give decor A. 2 14. Dete C12 A. 0 15.A san as, A. 16 B. 12 16. Dete
4. The temperature of a system is measured to be 75.4°F. An be,	equivalent temperature would	C ₁₂) A. 0
5. The compound copper (II) nitrate would have the formula A. CuNO ₃ B. Cu ₂ NO ₃ C. Cu(NO ₃) ₂ 6. All atoms of a given isotope of the same element,	D. 297.3 K	15.A san as, A. 16 B. 12
B. possess the same chemical properties C. have the same atomic number D. all the above		16. Dete A. 1 C. 2
 7. The isotope ⁵²₂₄Cr has in its nucleus, A. 24 neutrons B. 28 neutrons D. 	28 protons 52 neutrons	17. A co A 0. of th
 An example of an element that can be classified as a metalloid is, A. arsenic B. cobalt C. sodium 	alloid is, D. sulfur	>

9. The simplest formula of the molecule P₄O₁₀ is, eous solutions of HCl, HNO₃, H₂SO₄, and HClO are all, C. binary ionic compounds C. P₄O₁₀ D. P₈O₂₀

37Rb⁺and 35Br have the same number of, D. oxoanions

rotons ectrons B. neutronsD. (protons + neutrons)

t is the mass percent of sodium in sodium sulfate, Na2SO4? C. 28.57 % D. 32.37 %

mpose, how many grams of NO₂ are produced?(Pb=207,N=14,O=16) en: 2Pb (NO₃)₂(s) \rightarrow 2PbO(s) + 4NO₂(g) + O₂(g). If 16.8 g of Pb(NO₃)₂

rmine the number of molecules of sucrose in 2.00 x 10² grams of sucrose, B. 4.67 C. 9.35 D. 33.6

H22011, (C=12, O=16) B. 6.84×10^4 Ċ 3.52×10^{23} D. 1.20 x 106

5.00 g of oxygen gas nple of molecular hydrogen weighing 1.008 g contains the same number of atoms C. both of the above

2.00 g of Carbon rmine the weight in grams of one molecule of iodine, I_2 , (I = 127). D. none of the above

 $.66 \times 10^{-24}$ B. 4.22 x 10-22 D. 2.37 x 10²¹

ne compound is Impound contains by mass 40.0% carbon, 6.71% hydrogen, and 53.3% oxygen. 025 mole sample of this compound weighs 3.75 g. The molecular formula C. C6H14O4 D. C5H10O5

2 تنبيه هام: أسنلة الإمتحان موزعة على سنة صفحات. حل الإسنلة داخل كراسة الإمكمان ثم ظلل الإجابات الصحيحة في Bubble Sheet المرفق.

تنبيه هام: أسنلة الإمتحان موزعة على ستة صفحات. حل الإسنلة داخل كراسة الإمتحان ثم ظال الإجابات الصحيحة في Bubble

3 تنبيه هام: أسئلة الإمتَحان موزَّ عة على ستة صفحات. حل الإسئلة داخل كر اسة الإمتحان ثم ظلل الإجابات الصحيحة في Bubble Sheet المرفق.	B. nave smaller masses. C. collide with elastic collisions. D. have attractions between molecules.	25	3- average velocity. A. I only B. 2 only C. 3 only D. 1 and 2 only	hydrogen bromide, under the same temperature and pressure have equal; 1-number of atoms. 2- number of molecules.	22. Which of the following is true? Equal volumes of the gases, nitrogen dioxide and	A. 0.371 B. 0.411 C. 0.525 D. 0.589	21- In a mixture of $CH_4(g)$ and $C_2H_6(g)$, the partial pressure of $CH_4(g)$ is 0.825 atm. If the total pressure of the mixture is 1.400 atm, the mole fraction of $C_2H_6(g)$ in the mixture is	A. SO ₄ B. SO ₃ C. SO ₂ D. SO	20. If a 0.300-L flask at 27°C and 1.00 atm contains 0.975 g of vapor, the formula for the vapor could be,	C. the gas volume to increase but not to double D. the gas volume to decrease to half its original value	A. the gas volume to decrease R the gas volume to double	to 60 °C causes:	C. 6.00 x 10 ² D. 8.50 x 10 ² D. 8.50 x 10 ² D. 8.50 x 10 ²		18. How many grams of ammonia are produced when 1.50×10^2 g of hydrogen are reacted with 1.50×10^2 g of nitrogen? $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
ك الصحيحة في Bubble	30. Arrange the flowin A. Sc < K < Cl < S B. K < Sc < S < Cl	A. Ca < Rb < Ga < Br < Cl C. Cl < Br < Ga < Ca < Rb	29. The correct orde is:	B. $(\uparrow\downarrow)$ $(\uparrow\downarrow)$ $(\uparrow\downarrow)$ $(\uparrow\downarrow)$ $(\uparrow\downarrow)$ D. All of the above		28. Which of the foll	27. All of the follow A. K ⁺ B	A. 1, 0, 0, -1/2	C. $I(s) \rightarrow I^{+}(s) + e$ D. $I(g) \rightarrow I^{+}(g) + e$ 26 Which of the following	A. $I_2(s) \to I_2(s) + e$ B. $I_2(g) \to I_2^+(g) + e$	C. $a > c > d > b$ 25. Which of the foll	A. a>b>c>d	b. 1, 0,0, -1/2 c. 3, 1, 1, -1/2 d. 2, 0, 0, +1/2	a. 4, 2, -1, +1/2	Arrange the follow have the same en
، داخل كر اسة الإمتحان ثم قلل الإجاباذ المرفق.	wing atoms; K, S, Sc, and	a < Br < Cl 1 < Ca < Rb	r of increasing electroneg	(†1) (†)(†)(†) (†1) (†1)(†)(†) bove		ollowing electron configura 2s 2p	27. All of the following species are isoelectronic with Ar EXCEPT A. K ⁺ B. Cl ⁻ C. Ca ²⁺ D. Br ⁻	0	C. $I(s) \rightarrow I^{+}(s) + e$ D. $I(g) \rightarrow I^{+}(g) + e$ 26 Which of the following set of quantum numbers not allowed:) + e (g) + e	C. a > c > d > b 25. Which of the following represents ionization energy of iodine?				Arrange the following sets of quantum num have the same energy, place them together.
4 تتبيه هام: أسئلة الإمتحان موزّعة على ستة صفحات. حل الإسئلة داخل كر اسة الإمتحان ثم ظلل الإجابات الصحيحة في Sheet المرفق.	30. Arrange the flowing atoms; K, S, Sc, and Cl in order of increasing atomic radius; A. Sc < K < Cl < S B. K < Sc < S < Cl D. Cl < S < Sc < K	B. Rb < Ca < Ga < Br < Cl D. Rb < Ga < Ca < Br < Cl	29. The correct order of increasing electronegativity of the five atoms, Ca, Cl, Rb, Br, Ga, is:			28. Which of the following electron configuration represents a paramagnetic atom?1s2s2p	ronic with Ar EXCEPT D. Br	B. 3, 1, 1, -1/2 D. 4 3 3 +1/2	mbers not allowed:		D. $b > c > d > a$ on energy of iodine?	B.a>c>b>d			Arrange the following sets of quantum numbers in order of increasing energy. If they have the same energy, place them together.

PART II: Questions & Problems

(30 Marks)

Draw the Lewis structures for the following:

(12 Marks, tour marks each)

Lewis	
	NO ₃
	SF ₆
	XeF4

5 تتبيه هام: أسئلة الإمتحان موزعة على سئة صفحات. حل الإسئلة داخل كراسة الإمتحان ثم ظلل الإجابات الصحيحة في Bubble Sheet

2- Complete the following table

(18 Marks, two marks each)

	Hybridization	Polarity	Geometry	Lewis structure
- لجنة الممتحنين				:: C = 0:
أرق الأمنيات بالتوفيق - لجنة الممتحنين				F\S\F
				B - FF.

6 تنبيه هام: أسئلة الإمتحان موزعة على ستة صفحات. حل الإسئلة داخل كراسة الإمتحان ثم ظلل الإجابات الصحيحة في Bubble Sheet

Constants

Gas constant, R	0.083 atm L/ mol K	
Avogadro's number, N _A	6.02×10^{23}	

7 تنبيه هام: أسئلة الإمتحان موزعة على ستة صفحات. حل الإسئلة داخل كراسة الإمتحان ثم ظلل الإجابات الصحيحة في Bubble المرفق.

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

1969			
Ü	EX	AMINATION for First level B.Sc Geology	Students
	COURSE TITLE:	Historical Geology	COURSE CODE: GE1103
DATE:	JAN, 2023	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS

(Part I): (1 hour)

1- Put $\sqrt{or \times marks}$ and correct the wrong ones:-

(21 marks)

- 1- The relative age is used for interpret the relation between the sun and the earth
- 2- Arabian-Nubian shield occur in America and related to Alpine Orogeny at 900 Ma
- 3-The absolute age determined by using trilobites.
- 4-The Precambrian Era classified into Paleozoic, Mesozoic and Cenozoic.
- 5- Oceans and continents fixed during geologic time and no change in the surface of earth
- 6- Stony Meteorites is similar to the core of the earth
- 7-The Hadean Era began at 2300 to 1300Ma and occurred in Sinai

Answer the following questions-

(29 marks)

- 1-Define the Paleo-Proterozoic Era, age, classification and occurrences in Egypt and the World.
- 2-What is the evidence for the relation between the earth and sun?
- 3-Write on Pan-African orogeny, alpine Orogeny and Varascian orogeny
- 4-Define the Achaean Era, age, classification and occurrences in Egypt and the World
- 5-Write on methods for absolute age determination
- 6-Describe the Hadean Era, the age and occurrences in Egypt and the World.

(Part II)): (1 hour)

Choose the correct answer of the following questions:

(50 Marks)

- 1) Which of the following correctly describe the term Cenozoic
 - a. Age of mammals
- b. age of human
- c. age of new life
- d. age of the conifers
- 2) Which era in Earth's history is known as the Age of Reptiles
 - a. Paleozoic Era
- b. Precambrian Era
- c. Cenozoic Era
- d. Mesozoic Era

- 3) Which of the following characteristic of the Paleozoic Era
 - a. Mollusca
- b. Trilobite

- c. Brachiopods
- d. Birds
- 4) Which of the following index fossil for the Cambrian Period
 - a. Graptolites
- b. Archaeocyatha
- c. Trilobite
- d. Brachiopods
- 5) Approximately, 90% of the most important events in Earth's history happened in
 - a. Paleozoic
- b. Cenozoic
- c. Mesozoic
- d. Precambrian

الظر علق الورق ے

6) In which period the Graptolites were dominant a. Cambrian b. Ordovician c. Permian d. Triassic 7) What the bases of boundary delineation between the periods and eras b. appearance of organisms c. Absence and appearance of organisms a. Absence of organisms 8) Which period is also known as the age of fish a. Permian b. Ordovician c. Devonian d. Triassic 9) Which period is referred as the "age of dinosaurs? a. Triassic b. Cretaceous c. Devonian d. Jurassic 10) The first life forms on planet Earth occur during the Archean are called

c. protists

With Good Quck

d. prokaryotes

Prof. Abdelfattah A. Zalat Prof. Mohamed M. Abu Anbar

a. eukaryotes

b. trilobites

		كلية العلوم	م الرياضيات		جامعة طنطا
			ـ المستوى الاول ــ تأ		
	M.	كود المقرر: 1101		رياضيات 1	اسم المقرر:
2023/1/2	رُ التاريخ: 4				زمن الامتحان: ساعتان الدرجة ال
4 4 50 - 1		ن اربعه اوچه	 الامتحان مكون ه 	<u>:</u>	جب عن الاسئله الاتيه:
	TA P 1 1 3		· × * s · · · · · · · · · · · · · · · · · ·		سوال الاول: (35 درجه)
درجات)	10)	لريقة اخرى اثبت ان	cosł ومنها او بای د	$n^{-1}x = \ln(x +$	$-\sqrt{x^2-1}$) اثبت ان (a
		$\frac{\overline{dx}}{dx}$	$\cosh^{-1}x = \frac{1}{\sqrt{x^2}}$		
درجه)	15)			و للدوال الاتيه:	اوجد المشتقه الأولى $\frac{dy}{dx}$. b
		$-\sin^{-1}5x + 2^{(2x-)}$	$(1) - \cos(\ln 5x)$	= 1 × 2	
	y = (sinhx)			a " "v	
		$+\cos 6x - \sin^2 x =$	= -2		
	(10 در		f(x)	= sin x داله	 أوجد مفكوك ماكلوين الم
					سوال الثاني: (35 درجه)
9 : al < 7 2 a V :	Did cuita c	$aRb \leftrightarrow a \equiv b \pmod{a}$	بحة 2 بحث (12)	وعة الأعداد الصح	. إذا كانت R معرفة على مج
<u>15 درجه)</u>	N *	$acb \leftrightarrow a = b \Leftrightarrow acb = b$			ثم أوجد فصول تكافؤها؟ واو
			2 <i>x</i> -	+2. 411113	. حلل الكسر التالى إلى كسور
<u>10 درجه)</u>					
(10 درجه)	3+8+	$13 + \cdots + (5n - 2)$	$y = \frac{1}{2}(5n + 1)$	باصنی (ن ۱۷ € ۳۸	 اثبت باستخدام الاستنتاج الرب
درجه)	رونی) (80	ى ورقة التظليل الإلكة	يحل هذا السوال في	الصحيحة (سوال الثالث: أختر الإجابه
				\dots هو $f(x) =$	$\ln(x+7)$ المدى للداله (1
	R d] - 7,0	o.]¤	<i>R</i> − .b	R ⁺ .a
				alui lim	$\frac{\tan^{-1}2x}{\sin^{-1}x}$ قيمه النهايه (2
رفه	d. غير معر		2.c	d. 0	е .а
				10 f(x) -	- cas-12x distilla (
		1. 1.		7-1 1.	1 1, °
	$R - \left[-\frac{1}{2} \right]$	$\begin{bmatrix} -1,1 \\ 2 \end{bmatrix}$.d] .c	$[\frac{1}{2}, \frac{1}{2}]$.	$\left[\frac{1}{2},\frac{1}{2}\right]$ a
				هو	$\begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix} a$ $x) = sinhx \text{(4)}$
D.	d.	$R = \Gamma$	1.11 c	R+	b <i>R</i> a .
· , · . · . · .			in in the state of the contract of the contrac	" a a b t 5"	The registration of the control of t
					 عادلة المماس للمنحثى x
	y - 2x = 1	.d y + 2x =	= 1 .c y =	= 1 .b	y+x-1=0 a

$f(x)=x^2-3x$ في الفترة c الذي يحقق نظرية رول للداله $f(x)=x^2-3x$ في الفترة c الذي يحقق نظرية رول للداله
$\frac{4}{3}$.d $\frac{3}{2}$.c $\frac{3}{4}$.b $\frac{2}{3}$.a
\ldots قیمتها تساوی $\lim_{x \to \infty} x sin \frac{3}{x}$ (7
3 .c 1 .b −3 .a
$f(x)=\sqrt{\ln x}$ الداله العكسية للداله $f(x)=\sqrt{\ln x}$ هي $f(x)=\sqrt{\ln x}$
$e^{\sqrt{x}}$.d $\frac{1}{2}e^{x}$.c $e^{x^{2}}$.b $e^{\frac{x}{2}}$.a
y = sinhx + coshx (9)
R^+ ومداها R ومداها R^+ ومداها R^+ ومداها R^+ ومداها R^+ ومداها R^+ ومداها R^+
$\lim_{x\to 0} x^x = \cdots (10$
c e .b 0 .a. غير موجوده
11) أي العبارات الاثيه صحيحه
a. أى داله متصله تكون قابله للاشتقاق . أى داله قابله للاشتقاق تكون متصله
c. أى داله غير قابله للاشتقاق تكون غير متصله d. أى داله غير قابله للاشتقاق تكون متصله
a,b ثوابت هي $y=rac{1}{ax+b}$ المشتقه النونيه للداله $y=rac{1}{ax+b}$ حيث
$y^{(n)} = \frac{(-1)^{n+1}a^n}{(ax+b)^{n+1}}$.d $y^{(n)} = \frac{(-1)^{n+1}a^n}{(ax+b)^{n+1}}$.c $y^{(n)} = \frac{(-1)^na^n}{(ax+b)^{n+1}}$.b $y^{(n)} = \frac{(-1)^na^n}{(ax+b)^n}$.a
13) مشتقه الداله x cosh عبالنسبه للداله x sinh على
$-\coth x \cdot d$ $\coth x \cdot c$ $-\tanh x \cdot b$ $\tanh x \cdot a$
x^2+5 , $x>1$ الداله تكون $\{x^2+5\}$ الداله تكون $\{x^2+5\}$
$_{ m X}$ عند المستقاق عند $x=1$. متصله و قابله للاشتقاق عند $x=1$
$_{ m X}=1$ عند $_{ m C}=1$ عند متصله وليست متصله وليست قابله للأشتقاق عند $_{ m X}=1$
$\frac{\mathrm{d}^5}{\mathrm{d}x^5}(3x+4)^5 = \cdots (15$
5! 3 ⁵ .d 5!.5 ³ .c 5!.3.b 5!.a
16) أى العبارات الاتيه غير صحيحه
$ cosh^2x - sinh^2x = 1 $ b $ sinh2x = 2sinhx coshx $ a
$cosh(x + y) = cosh x cosh y - sinh x sinh y$ d $cosh2x = cosh^2 x + sinh^2 x$ c
الداله $f(x) = x \ln x$ نها نقطه نهایه صغری محلیه (local minimum) عند (17
$(e, -e) .d$ $(\frac{1}{e}, \frac{-1}{e}) .c$ $(\frac{1}{e}, \frac{1}{e}) .b$ $(e, e) .a$

```
\lim_{x\to 0} f(x) فان \frac{\sin 9x}{x} \le f(x) \le 9 \cos x فان (18)
    d) غير موجوده
                            ... في الفترة (increasing) داله تزايديه f(x) = x^3 + x^2 - 5x - 5 الداله (19
                               ]1,\infty[.c] ]1,\infty[.c] ]-\infty,\frac{-5}{3}[.b] ]\frac{-5}{3},1[.a]
   ]-\infty,\frac{-5}{2}[.d]
                                           f(x) = \frac{x}{x^5 + 5x^4 - 5x^3 - 25x^2 + 4x + 20} (20)
                              \{1, -1, 2, -2, -5\} .c \{1, -1, 4, -2, 5\} .b \{-1, 4, 5\} .a
\{1, -1, 5, -4\} . d
                                                       C-(A\cup B)\equiv \cdots فإن عاد مجموعات فإن A,B,C إذا كانت
                       b) (C-A) \cap (C-B)
                                                             a) (C-A) \cup (C-B)
                   d)(C-A)\cup B
                                                              c) (A \cup B) - C
                                                                 \neg(p \rightarrow q) \equiv \cdots اذا کان p, q تقاریر فإن p, q اذا کان (22
                                     c) p \land \neg q b) \neg p \land q a) \neg p \land \neg q
                  d)p \wedge q
                                              . (A-B)\cup(B-A)\equiv\cdots اِذَا كَانِ A,B مجموعات فَإِن (23
                        b) (B \cup A) - (A - B) a) (A \cup B) - (B \cap A)
                        d) (A \cup B)
                                                          c) (A \cup B) \cap (B - A)
                                                   . (p \lor q \lor r) \land \neg p \equiv \cdots نقاریر فإن p,q,r نقاریر (24
                                                                    a) (p \lor q) \land \neg p
                           b) (q \lor r) \land \neg p
                           d) (p \lor r) \land \neg p
                                                                    c) (q \vee r) \wedge p
                      x هي مجموعة الأعداد الحقيقيه فإن قيمة التقرير x=x+2=1 هي ...
         خلاف ذلك (c) لا يمكن تحديده (d)
                                                                b) T
                                  26) إذا كانت قيم الصدق ل p, q هي F, T على التوالي فإن التقرير يكون F عندما ...
                                                             b) p \lor q a) p \leftrightarrow p
                    d) p \wedge q
                                     c) p \rightarrow q
                                                                    A\Delta B \equiv \cdots إذا كانت A, B مجموعات فإن (27
                                                               a) (A-B) \cap (B-A)
                 b) (A \cap B) - (A \cup B)
                                                              c) (A \cap B) \cup (A - B)
                 d) (A \cup B) - (A \cap B)
                                                            p \lor (p \land q) \equiv \cdots يَفَارِير فَإِن p, q تَقَارِير فَإِن p, q يَقَارِير فَإِن p, q
                                                            b) \neg p \lor q a) F
                                                                   A' \cap B \equiv \cdots إذا كانت A, B مجموعات فإن (29
                          b) \{x: x \in A \land x \notin B\}
                                                                  a) \{x: x \in A \lor x \in B\}
                                                                c) \{x: x \notin A \lor x \in B\}
                       d) \{x: x \notin A \land x \in B\}
```

. $(p \leftrightarrow q) \equiv \cdots$ قارير فإن p, q تقارير فإن (30 a) $(p \rightarrow q) \land (q \rightarrow p)$ b) $(p \rightarrow q) \lor (q \rightarrow p)$ c) $(p \rightarrow q) \land \neg (q \rightarrow p)$ $d) (p \rightarrow q) \vee \neg (q \rightarrow p)$... هو عند التقرير $1 \le A: x+3 \ge 3$ هو 31 a) $\forall x \in A: x + 3 < 9$ b) $\forall x \in A: x + 3 \leq 9$ c) $\forall x \notin A: x + 3 < 9$ d) $\forall x \in A: x + 3 \neq 9$. $(p \lor q) \land \neg p \equiv \cdots$ قارير فإن p,q نقارير و c) q b) $\neg p \land q$ a) $\neg p \lor q$. $[(q \lor r) \land \neg p] \lor (\neg q \land \neg p) \equiv \cdots$ نقارير فإن p,q,r نقارير وإن كان (33 b) $\neg p$ a) F d)T $(A\cap B^{\setminus})^{\setminus}\cup(B\cap C)\equiv\cdots$ فإن A,B,C فات A,B,C إذا كانت c) $A \setminus \cup B$ b) $A \setminus \cap B$ a) $A \cap B \cap C$ $d)A\cup B\cup C$ 35) عند استخدام البرهان الغير المباشر نثبت ان ... c) $p \rightarrow q$ b) $p \rightarrow \neg q$ a) $\neg q \rightarrow p$ $d) \neg q \rightarrow \neg p$. $(A^{\setminus} \cap B^{\setminus})^{\setminus} \equiv \cdots$ فإن فإن A, B مجموعات فإن (36 a) $A \cap B$ b) $A \cup B$ c) $A' \cup B'$ $d) A' \cap B'$ $-p
ightarrow q \equiv \cdots$ اذا كانت p,q تقريرين فإن $p,q \equiv 0$ $(c) \neg q \rightarrow p$ $(b) \neg q \rightarrow \neg p$ $(a) p \rightarrow \neg q$... عندما $C \cap (A^{\setminus} \cup B^{\setminus}) \equiv C$ فإن A, B, C عندما (38) $a)(A \cup B) = \emptyset$ b) $(A \cap B) = \emptyset$ $c) (A^{\setminus} \cap B^{\setminus}) = \emptyset$ $d)(A^{\setminus} \cup B^{\setminus}) = \emptyset$ $A\Delta A = \cdots$ مجموعه A اذا كان A مجموعه b) Ø a) U c) A'd) A $B-(B-A)\equiv \cdots$ اذا کان A,B مجموعات فبن (40) $a) A \cap B$ b) A c) Bd) A' - B

	0 200				
11:00.0	بالنجاح و	Lears	تمنياتنا	اطيب	20
اسوسيق	7	W 4		4 4	C

الممتحنون: د/ أيمن الشرقاوى د/ نهى الشرقاوى

	Tanta University, Faculty of Science, Department of Physics					
	Examination for first year students					
Paguity of Colones 1969	Course title	Heat & Properties of Matter (Physics 1)	Course Code: PH1121			
Date 10-01-	10-01-2023	Total Assessment Marks: 150	Time Allowed: 2 hrs			

		30.00.0000	I mio / mowed, 2 ms		
Answer first and second qu	estions in the answer s	sheet model (Rubble sheet	4) (CO B.C)		
First Question (Propertie	es of Matter): (30 Ma	mke)	i) (ou Marks)		
1) When a rope is pulled o	n either side, what is t	he stress acting on it?			
A) Compressive stress	B) Tensile stress	C) Normal stress	D) Tangential stress		
2) What is the dimensional	formula for the unive	rsal gravitational consta	nt		
A) $[M^{-1}L^3T^{-2}]$ B)		$M^{-1}L^2T^{-2}$ D) [M ⁻² L ⁻²			
 A particle is initially at the simple harmonic motion time 3T/4, if it starts from 	ne centre and going to (SHM) it is undergoing	words the 1-C T	•		
A) At right extreme, zer	o velocity	B) at centre, maximum	n speed towards left		
C) at centre, maximum	speed towards right	D) Mid-way between	centre and A		
 If the time period of a sin SHM will becomes 	nple harmonic motion	(SHM) is doubled, then	the amplitude of the		
A) double B) 4 tim	es C) 8 times	D) remains the same			
5) The viscous force the rela	tive motion between t	he adjacent layers of a f	uid in matica		
Which one of the flowing	fits best in the senten	ce?	and in motion,		
A) opposes B) never aff		D) may effect under	r certain con diti		
 If the surface of a liquid is container is 		of contact of the liquid w	with the walls of the		
A) Acute angle B) Obtu	se angle C) 90	o D) 0°			
7) the distance covered by a p			(1'- 1 · · ·		
A) 2A B) 4A C) Zero D) A	and in one-time period is	(amplitude = A).		
8) For simple harmonic motion	5	le acceleration is amount			
A) velocity is maximum B) di	splacement is maxim	m C) displacement	t when the		
9) Which of the following is a	unit of dynamic visco	sity?	zero D) force is zero		
A) [M ¹ L ¹ T ⁻¹]. B) [M ¹		E	F3 61 × 2 = 2-		
A) $[M^1 L^1 T^{-1}]$. B) $[M^1 L^{-1} T^{-1}]$. C) $[M^1 L^{-2} T^{-2}]$. D) $[M^1 L^{-2} T^{-2}]$. 10) Raindrops are spherical in shape because of					
A) Capillary B) Surface Te		rd motion D) Accele	eration due to gravity		

Second Question (Heat): (30 Marks)

1) The molar specific heat constant pressure of an ideal gas is 7R/2. The ratio of specific heat
at constant pressure to that at constant volume is?
A) 9/7. B) 8/7. C) 7/5. D) 5/7.
(2) A substance that heats up relatively quickly has a:
A) low specific heat capacity. B) high specific heat capacity.
13) The lowest temperature possible in nature is:
A) -273 °C. B) 0 °C. C) 4 K.
14) As you heat a block of aluminium from 0 °C to 100 °C, its density:
A) Increases. B) Decreases. C) Stays the same.
15) A glass jar (α = 3x10 ⁻⁶ C ⁻¹) has a metal lid (α = 16x10 ⁻⁶ C ⁻¹) which is stuck. If you heat
them by placing them in hot water, the lid will be:
A) Easier to open. B) Harder to open. C) Same.
16) Which of the following state of the matter have two specific heats?
A) Solid. B) Gas. C) Liquid. D) None of these.
17) When 60 calories of heat are supplied to 15 g of water, the rise in temperature is
A) 75 °C. B) 9000°C. C) 4°C. D) 0.5°C.
18) The process of transfer heat by actual migration of particles of the substance is called as
A) Conduction B) Convection C) Radiation D) Heat transfer
19) What is the S.I unit of specific heat capacity?
A) $J^{1}Kg^{-1}k^{-1}$ B) $J^{1}Kg^{-2}k^{-1}$. C) $J^{-1}Kg^{-1}k^{-1}$ D) $J^{1}Kg^{-1}k^{-2}$
20) The molecule of a monatomic gas only three translational degrees of freedom. Thus, the
average energy of a molecule at temperature T is
A) $3K_BT$. B) $(3/4) K_BT$. C) $(1/3) K_BT$. D) $(3/2) K_BT$.
Third Question (Properties of Matter): (45 Marks)
1. Explain the elasticity curve and write the types of deformation in the solid bodies.
2. Proof the Formula for centrinetal acceleration and force in circular motion.

Fourth Question (Heat): (45 Marks)

a) Explain an electrical method for determination the specific heat of a liquid. (15 Marks)

3. Explain how to determine the gravitational acceleration using the conical pendulum.

- b) Discuss in details how to determine the thermal conductivity of a good conductor. (15 Marks)
- c) Explain why the molar specific heats of gases at constant pressure (C_P) are greater than the molar specific heats at constant volume (C_V). (10 Marks)
- d) A liquid takes 5 minutes to cool from 80 °C to 50 °C. How much time will it take to cool from 60 °C to 30 °C. The temperature of the surroundings is 20 °C. (5 Marks)

Good Luck

Examiners: Dr. Mohamed Elsheshtawy, Dr. Mohamed Elnaggar.

جامعة طنطا – كلية العلوم

إمتحان المستوى الأول - جميع الشعب

الثقافة البيئيـة

عنوان المقرر

5 ينايـر 2023

UN1107 رقم المقرر

القصل الأول

زمن الإختبار: ساعتان | درجة الإختبار: ٥٠ درجة

أجب عن <u>"أربعية أسئلة فقط"</u> على ان تكون إجابة كل سؤال في صفحة مستقلة

<u>السؤال الأول :</u> عرف <u>اربعة فقط</u> من المصطلحات الآتيــة (١٢.٥ درجه) الكارثه البيئية – تلـــوث التربــة – التصحـــر - الخلل البيئي النظام البيئي - التنميــة المستدامـة – الموارد الطبيعية

<u>السؤال الثاني:</u> أجب عن <u>"ثلاثــة فقط</u>" مما يأتي (٥٠.٦١ درجه)

١ – مـا هـي مصـــادر تلوث الهـــواء.

٢ - أكتب عن انواع الفيضانات وأسباب حدوثها.

٢ - أذكر فقط الأسباب التي تؤدي الى التصحــر،

٤ - أكتب عن انواع الكوارث البيئية وأقسامها.

(٥٠,١٢ درجه) <u>السؤال الثالث:</u> أجب عن "<u>اثنين فقط</u>" مما يأتــى:

١- أذكر فقط ما تقوم به الحكومات في المحافظة على التنوع الحيوي.

٢ - أكتب عن المراحل الأساسية لإدارة الكارثة البيئية.

٣ - وضح دور الجامعـة في حدمة المجتمع وحل المشكلات البيئية .

(۱۲.۵) درجه) <u>السؤال الرابع:</u> أكتب في "<u>ثلاثة فقــط</u>" من الآتي:

١ - وضح المكونات الرئيسية للنظام البيئي.

٢- أهميــه و فوائـــد التنــوع الحيـــوي.

٣- أذكر الأسس التي تتبع في إدارة الموارد البيئية الطبيعية.

٤ - دور وسائل الإعلام فـــى توطيد وزيادة الوعى البيئي لدى المواطنين.

<u>السؤال الخامس:</u> أشرح <u>"ثلاثـة فقـــط</u> " من الآتى: (٥.7١ درجه)

١ – مصــادر تلـــوث التربــة.

٢- خصائص الموارد الطبيعية واقسامها.

٣ – عوامل انقراض الكائنات الحية وقلة التنوع الحيوى.

٤ـ وضح كيفية حدوث الزلازل و العوامل البشرية التي تؤدي إليها.

<u>السؤال السادس:</u> أجب عن <u>"ثلاثـة فقــط</u> " مما يأتى (١٢.٥ درجه)

١ – وضح الأنظمة التي يمكن إستخدامها للسيطرة على تلوت الهواء.

٢ – ما هــي الأثــار التـي تسببها الضوضــاء وكيفية التحكم فيها؟ .

٣- ما هـى المهارات المكتسبه من دراسة مقرر الثقافة البيئيـــة؟.

٤- أذكر اهم المشاكل التي تواجه الانسان في البيئة وحلها يعد بمثابة ضرورة حتمية لحياه افضل ؟

أد/ محمود عشماوي أد/ عبد النعيم الأسيوطي أد/ طلعت ميز أد/ الرفاعي قناوي أد/ أحمد شرف الدين