Acritarchs

Case study from the Eocene of Egypt

By

Mohammed shawky Ahmed shaban

(4th year, Special Geology)

Supervised by

Dr. Ali Soliman

Geology Department
Faculty of Science
Tanta University
2013
Acritarchs

Case study from the Eocene of Egypt

"An article submitted to the Department of Geology-Faculty of Science- Tanta University"

"To complete the requirements for obtaining a bachelor's degree in geology"

By

Mohammed shawky Ahmed shaban

(4th year, Special Geology)

Supervised by

Dr. Ali Soliman

Geology Department

Faculty of Science

Tanta University

2013
دراسة لعينات من رواسب الأيوسين - مصر

إعداد

محمد شوقي أحمد شعبان
(الفرقة الرابعة علوم جيولوجيا)

تحت إشراف

د/ علي سليمان
قسم الجيولوجيا
كلية العلوم
جامعة طنطا
2013

الاكتئاش
دراسة لعينات من رواسب الأيوسين - مصر

"مقال مقدم إلى قسم الجيولوجيا - كلية العلوم - جامعة طنطا"

"لإكمال متطلبات الحصول على درجة البكالوريوس في الجيولوجيا"

إعداد

محمد شوقي أحمد شعبان
(الفرقة الرابعة علوم جيولوجيا)

تحت إشراف

د/ علي سليمان
قسم الجيولوجيا
كلية العلوم
جامعة طنطا
2013
قالوا سبحانك لا علم لنا إلا ما علمتنا
إنك أنت الرب麂 العليم الحكيم
صدق الله العظيم
سورة البقرة الآية: 32
ACKNOWLEDGEMENTS
Acknowledgement

All my thanks to "Allah" who give me help and ability to finish this work.

Then, I wish to express my deepest gratitude to Dr. Ali Soliman, lecturer of stratigraphy and paleontology, Geology Department, Faculty of Science, Tanta University for suggesting the present point of study, Great efforts and guidance, providing me with reference related to the subject and also for her continuous encouragement during the preparation of this work.
CONTENTS
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Pages No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>CHAPTER TWO: HISTORY OF ACRITARCH STUDY</td>
<td></td>
</tr>
<tr>
<td>2.1 HISTORY OF ACRITARCH STUDY</td>
<td></td>
</tr>
<tr>
<td>2.2 MORPHOLOGY</td>
<td></td>
</tr>
<tr>
<td>2.3 Vesicle size and shape</td>
<td></td>
</tr>
<tr>
<td>CHAPTER THREE: CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>3.1 Wall structure</td>
<td></td>
</tr>
<tr>
<td>3.2 Processes</td>
<td></td>
</tr>
<tr>
<td>3.3 TAXONOMY</td>
<td></td>
</tr>
<tr>
<td>3.4 CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>3.4.1 Phenetic classifications</td>
<td></td>
</tr>
<tr>
<td>3.4.2 Phylogenetic classifications</td>
<td></td>
</tr>
<tr>
<td>Chapter FOUR: BIOSTRATIGRAPHY</td>
<td></td>
</tr>
<tr>
<td>4.1 BIOSTRATIGRAPHY</td>
<td></td>
</tr>
<tr>
<td>4.2 Diversity trends</td>
<td></td>
</tr>
<tr>
<td>4.3 PALEOECOLOGY AND PALEOGEOGRAPHY</td>
<td></td>
</tr>
<tr>
<td>Chapter Five: Case study from the Eocene of Egypt</td>
<td></td>
</tr>
<tr>
<td>Summery</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Arabic summery</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

LIST OF TABLES
List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Fig. Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Figure 1: Size frequency diagram for a species of Leiosphaeridia (data from Colbath 1983).</td>
<td></td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Figure 2: Acritarch morphology.</td>
<td></td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Figure 3: Acritarch morphology.</td>
<td></td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Figure 4: Process variation within individual specimens.</td>
<td></td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Figure 5: Some Acritarchs photos</td>
<td></td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Figure 6: Some Acritarchs photos</td>
<td></td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Figure 7: Distribution of acritarch genera over time.</td>
<td></td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Figure 8: Acritarch species diversity over time</td>
<td></td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Figure 9: Number of acritarch species vs. time</td>
<td></td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Figure 10: A photograph of the Mudawara Mt. Fayoum Depression, Egypt.</td>
<td></td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Figure 11: Basics of palynological sample processing (Soliman, 2006).</td>
<td></td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Text</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>A comparison of phenetic acritarchs classifications, including some groups now considered to be prasinophytes</td>
<td>24</td>
</tr>
</tbody>
</table>
ABSTRACT
Abstract

Acritarchs are fossilized, organic-walled cysts of unicellular protists that cannot be assigned to known groups of organisms. The group Acritarcha (akritos) (uncertain, mixed, and confused) and (arche) (beginning, origin) was proposed by Evitt (1963 a, b) as an informal taxon to accommodate forms left over after many of the hystrichospheres were transferred to the Dinophyceae. Most acritarchs are probably the resting cysts of marine phytoplankton.

The early history of acritarch studies has been well documented by many Palynologists (e.g. the latter giving a brief review of acritarch studies in North America. A detailed history of research on Tasmanites can be found in Muir & Sarjeant (1971); Mendelson (1992) and Martin (1993). Tappan (1980) also discussed the history of acritarch and prasinophyte studies.

Beginning in the 1930s, many fundamental systematic studies on acritarchs were carried out in Europe. Eisenack (e.g. 1938, 1958) described many common genera such as Baltisphaeridium, Leiofusa and Leiosphaeridia. His systematic studies are continued in the "Katalog der fossilen Dinoflagellaten, Hystrichosphiiren and verwandten Mikrofossilien" (Eisenack et al. 1973, 1976, 1979a, 1979b), a valuable resource for taxonomists. Deflandre was also influential in early systematic work, establishing the ubiquitous Micryhstridium in 1937.

Acritarchs are found in large numbers, and the taxonomic diversity of individual assemblages can be quite high. Perhaps a reasonable conclusion is that different taxa will become useful for the contrasting functions of paleoecological, biostratigraphic and paleogeographic analyses. The application of acritarch distributions to more generalized analyses of global and regional studies of the Paleozoic oceans will undoubtedly become more important in future work.
Chapter I

Introduction
Chapter I

Introduction

1. Introduction

Acritarchs are fossilized, organic-walled cysts of unicellular protists that cannot be assigned to known groups of organisms. The group Acritarcha (akritos) (uncertain, mixed, and confused) and (arche) (beginning, origin) was proposed by Evitt (1963 a, b) as an informal taxon to accommodate forms left over after many of the hystrichospheres were transferred to the Dinophyceae. Most acritarchs are probably the resting cysts of marine phytoplankton (Evitt 1963 a, b).

Acritarchs can be found throughout the geological column, but are most common in the Lower Paleozoic. The group is probably polyphyletic, including ancestors of both chromophytes and chlorophytes.

The morphology of the acritarchs is diverse, presumably reflecting their heterogeneous origins. Most individuals consist of a single, hollow vesicle (or theca) that may be ornamented with processes (most often spines or muri) and surficial sculpturing elements. Vesicle symmetry varies from spherical or radial to bipolar to irregular.

The gross morphology of acritarchs as single organic sacs (vesicles) suggests a derivation from unicellular organisms. Many show simple Excystment structures, which strengthens the suggestion that they are algal cysts. Acritarchs vary from <10 µm to >1 mm in size, but most species range from 15 to 80 µm.

Acritarchs have great value in biostratigraphic applications, particularly for the Paleozoic. However, their potential is currently under-recognized, to some extent owing to the prior establishment of better known organisms for
biostratigraphic zonation. They will become more useful for Lower and Middle Paleozoic biostratigraphy as more well-dated stratigraphic sections are described.

Acritarchs are the obvious choice for Proterozoic biostratigraphy, but their utility has been limited by the imprecise dating of Precambrian sequences and by the imprecise taxonomy of the sphaeromorph acritarchs that dominate Precambrian assemblages.

Acritarchs also have great potential in paleogeographic and paleoenvironmental studies, but our lack of understanding of systematic relationships between acritarchs and the algae make critical paleoecological inferences difficult.

Many non-acanthomorphic acritarchs could be cysts of freshwater Chlorophyta, given that several studies have demonstrated sporopollenin in recent representatives of these algae (Atkinson et al. 1972; see Johnson 1985 for a list of sporopollenin-containing freshwater chlorophytes). The recovery of cyanobacterial sheaths from macerations of Proterozoic shales (Butterfield et al. 1988; Strother 1994) opens up the possibility that these prokaryotes may have produced resistant, organic-walled structures capable of being preserved as palynomorphs sensu Traverse (1988).

Acritarchs are an important source of paleobiological information. The sheer numbers of acritarchs preserved in the rock record make them attractive for quantitative biostratigraphic and paleobiological studies. They represent the fossil record of the base of the global food chain during the Proterozoic and Paleozoic. Together with the cyanobacteria, they record the history of oxygen-producing autotrophes, organisms which have had a profound effect upon the composition of the atmosphere and the subsequent evolution of life on Earth.
Chapter II

HISTORY OF ACRITARCH STUDY
Chapter II

HISTORY OF ACRITARCH STUDY

2.1. HISTORY OF ACRITARCH STUDY

The early history of acritarchs studies has been well documented by many Palynologists (e.g., the latter giving a brief review of acritarch studies in North America. A detailed history of research on Tasmanites can be found in Muir & Sarjeant (1971); Mendelson (1992) and Martin (1993). Tappan (1980) also discussed the history of acritarch and prasinophyte studies (Martin, 1993).

In 1963, Evitt suggested removing from the Hystrichosphaerida those microfossils clearly related to the dinoflagellates. The remaining problematic taxa were labelled acritarchs. Evitt's suggestion was widely accepted and has proved useful. But inherent in his definition is the caveat that, "When ever the biological affinities of individual acritarch genera can be established with sufficient précision, those genera should forth with cease to be referred to as acritarchs and should be assigned to their proper places in the taxonomic hierarchy under the appropriate nomenclatural code." (Evitt 1963b).

Mantell (1845) clearly demonstrated that the "Xanthidia" were organic-walled, but throughout the remainder of the nineteenth century, confusion about their cheffical composition added to the difficulties in their classification. Henry Deane (cited by Mantell 1845), was apparently the first person to free "Xanthidia" from the cherty matrix by acid maceration, making him and Mantell the first to observe acritarchs as dispersed palynomorphs.

White (1862) is credited with the first description of Paleo zoic acritarchs. He described microfossils from cherts, referring them to Xanthidia, and like Ehrenberg, he seems to have had difficulty in distinguishing between primary organic preservation and primary/secondary mineralization of the fossils. Dana (1895, p. 582) illustrated some of White's specimens featuring a "diatom" and "Xanthidia, spore cases of Desmids." Dana's "diatom" appears to be a
Pterospermella, and some of the specimens labeled "spicules of sponges" are possibly *Veryhachium*.

The description of organic-walled microfossils from both cherts (in petrographic sections) and siliciclastic rocks (where they are first removed by chemical maceration) has continued to the present time (see discussions in Diver & Peat 1979; Mendelson 1992). Evitt (1963b, p. 301) considered some of the 2 Ga Gunflint Chert microfossils to be acritarchs, although this implies the existence of eukaryotes in an assemblage that is thought to be entirely prokaryotic.

Beginning in the 1930s, many fundamental systematic studies on acritarchs were carried out in Europe. Eisenack (e.g. 1938, 1958) described many common genera such as *Baltisphaeridium*, *Leiofusa* and *Leiosphaeridia*. His systematic studies are continued in the "Katalog der fossilen Dinoflagellaten, Hystrochirosphiiren und verwandten Mikrofossilien" (Eisenack et al. 1973, 1976, 1979a, 1979b), a valuable resource for taxonomists. Deflandre was also influential in early systematic work, establishing the ubiquitous *Micrhystridium* in 1937.

During the 1960s and early 1970s systematic work on the acritarchs expanded in Belgium (Martin), England (Downie and his students), North America (Loeblich Jr.) and Spain (Cramer). Staplin (1961) proposed the genus *Multiplicisphaeridium* for forms with discrete, branched processes with closed tips. Staplin et al. (1965) clarified the concept of *Baltisphaeridium*. The work of Loeblich (1969) and Tappan (1980) and their students have advanced acritarch studies in the United States.

Most research on acritarchs has been primarily concerned with taxonomic description and biostratigraphy. Consequently, acritarchs research is not yet oriented toward the synthesis of evolutionary trends or other broader problems. While the need for good taxonomy remains, practical and theoretical applications will prove valuable in the future.
2.2. MORPHOLOGY

The accurate description of morphology is critical in the study of acritarchs. Morphology forms the basis for a consistent and objective taxonomy upon which more general paleo-ecological, paleogeographic, stratigraphic and evolutionary models can be built. Cramer (in Eisenack et al. 1979a) presented an impassioned argument for the primacy of morphology over typology in classification and taxonomy (Cramer in Eisenack *et al.* 1979a).

Most acritarchs consist of an organic-walled sac (also called the vesicle or central body), which may be modified by outgrowths of linear elements (processes) and / or by planar membranes forming septa, muri, wings or a velum. Processes and vesicle walls may be further modified by surficial sculpture such as grana, knobs or small spines, rugulae, or striae.

Many of these terms are defined in general works on palynology because most acritarchs represent the cysts of phytoplankton, Excystment structures (slits and holes in the vesicle walls) may also be prominent in their morphology (Cramer & Diez, 1979).

Differences in vesicle wall ultrastructure could possibly reflect underlying, fundamental taxonomic differences. Determination of wall ultrastructure generally requires the use of transmission electron microscopy (TEM), but this technique is impractical for general descriptive work.

An essential aspect of acritarch morphology concerns the topology, or geometric arrangement, of its various components. The position of processes and sculpture on the vesicle can form patterns that become important descriptive characters. Multiple, distinct wall layers, internal bodies and membranous envelopes are all aspects of acritarch topology.

Accurate description of multiple wall layers may demonstrate the relations between vegetative and sexual phases in the original organism. Have advocated topology as a character of fundamental importance in the study of acritarchs morphology. (Le Herisse, 1989).
2.3. Vesicle size and shape

Acritarchs exhibit a wide range in size. Spherical spiny forms range from 5 to 240 µm. Within simple Precambrian spherical forms (Sphaeromorphitae), species can range in diameter from a few microns (Pl. 1, Fig. 1) to Chuaria which has a size range of 0.5 to 5 nuns. This corresponds to a volumetric range from 1.4 x10^{-11} cm³ to 0.07 cm³ a volumetric doubling ratio of 232. Size as expressed in vesicle diameter, process length and overall diameter, can be an important character, but size has often been used arbitrarily and many taxa with size-based boundaries appear to overlap or intergrade.

In taxonomic descriptions, size is usually expressed in terms of a mean value (such as vesicle diameter or process length). These descriptive statistics may also be expressed as a Size-frequency diagram. Such an empirical diagram can be useful in delineating taxa and in ecological interpretations. For example: Figure 1 shows a positively skewed size-frequency plot of Leiosphaeridida sp described. Positively skewed distributions are typical of many fossilized populations of algae, and may indicate derivation from a single, actively growing population (Downie & Sarjeant, 1963).

Shape is described in terms of the symmetry of the vesicle, the shape of the vesicle outline, and the relative placement of processes and other extensions of the vesicle wall. In addition, the topological relations of discrete multiple walls may be important in shape description. Vesicle symmetry is described with reference to axes of rotation and mirror planes. Most acritarchs are viewed as the flattened remains of three-dimensional objects, and descriptions of symmetry may reflect their reconstructed shape, as recommended by Mendelson (1992).

Some acritarchs, however, were originally flat or discoidal prior to depositionally induced flattening. For example, Duvernaysphaera was clearly discoidal in its original form. Some species of Veryhachium and Neoveryhachium were also originally planar. (Le Herisse, 1989).
Figure 1: Size frequency diagram for a species of *Leiosphaeridia*

(from Colbath 1983).

The distribution of processes or other extensions of the vesicle wall may determine symmetry. Eisenack *et al.* (1973) used process distribution to define three symmetry classes:

1. **Hemimorphic symmetry:** bipolar symmetry in the distribution of processes and/or sculptural elements in an acritarchs where one pole has a process and/or sculpture cover clearly and systematically different from the other.

2. **Holomorphic symmetry:** bipolar symmetry in the distribution of processes and/or sculptural elements in an acritarch, where both poles have an essentially identical cover of processes and/or sculptural elements.

3. **Regular symmetry:** symmetry in the distribution of processes and/or sculpture on an acritarchs where there is no apparent topical preference for anyone place of the central body. I.e., the processes or sculptures notch early concentrated at the poles, equator, etc.

Bipolar symmetry refers to a single rotational axis of symmetry. In holomorphic forms, such as *Eupoikiloifiisa*. There is an additional mirror plane normal to the bipolar axis. Some specimens of *Veryhachium preserve* varying degrees of rotational symmetry around an axis perpendicular to the plane of the flattened vesicle. Thus, *V. tnspmosum* possesses a three-fold axis of rotation in addition to its mirror plane in the plane of flattening. In general, an excystment
feature, e.g. the presence of an epityche in *V. trispinosum*, will destroy the preservation of rotational symmetry.

Most acritarchs possess a form of what referred to as radial symmetry (a term preferred to Eisenack's "regular" symmetry). Radially symmetric organisms can be rotated about all three orthogonal axes through their center without showing any preferred orientation. **For example:** is radially symmetrical except for a membranous tail or velum that imparts polarity, making it hemimorphic. An excystment feature may break radial symmetry to produce a bipolar axis of rotation, as in *Axisphaeridium* (Tappan 1980) and *Priscogalea*. Acritarchs *with* an equatorial flange (ala), such as *Pterospermella* have radial symmetry only in the equatorial plane, rather than three-fold radial symmetry Tappan (1980, p. 149).

Even though vesicle shape appears to be a useful taxonomic character, it is not always useful in practice. Shape is one of the fundamental characters used in Downie’s (1963) supra-generic classification, but there are many acritarchs whose shapes fall between these taxonomic classes. Text-Figure 2 illustrates some common shapes Downie's (1963).
Chapter III

CLASSIFICATION
Chapter III

CLASSIFICATION

3.1. Wall structure

Wall structure concerns both the inner components (ultrastructure) and chemical composition of the acritarch wall. Eukaryotic phytoplankton produces two kinds of wall-forming polymers, cellulose and sporopollenin. Cellulose is ubiquitous in plant cell walls, but its macro-molecular structure generally does not survive diagenesis. Sporopollenin, a class of ester-linked carotenoid derivatives, is the principal chemical component of acritarchs that survives diagenesis (Brooks et al. 1971).

It is preserved as a primary organic compound, and is not a replacement or petrifaction. Sporopollenin production may represent an adaptive response for preserving a live protoplast over periods of adverse environmental conditions. For terrestrial plants, this adaptation permits water retention in a spore or pollen grain; for fully aquatic organisms

Jux (1968, 1971) examined Baltisphaeridium longispinosum, P.trifurcatum, Goniosphaeridium balticum and Acanthodiacrodium divisum, using the TEM, and claimed to have found in all of them radial pores that he compared to Tasmanites and its modern counterpart, Halosphaera. Citing this work (Jux, 1968,1971).

Downie (1973) reasoned that Baltisphaeridium has a tasmanitid type of wall structure, relating it to the Prasinophyceae, using light microscopy, described the vesicle wall of Baltisphaeridium as "sometimes finely porate or with canals", whereas the "spine wall is usually hyaline". Their observations may support a tasmanitid wall structure for Baltisphaeridium. He described Micrhystridium, diacrodisian, and visburyphaerid as the other three basic structural types seen in the acritarchs. Micrhystridium walls are thin and homogeneous. Diacrodisian
Figure 2: Acritarch morphology:

(A-R) Netromorphitae, W-Y, Pteromorphitae,
(S) Diacromorphitae, Z, AA, Prismatomorphitae,
(T, U) Coryphomorphitae, (BB-DD) Oomorphitae,
V, Sphaeromorphitae,
Figure 3: Acritarch morphology:

Contain radially aligned pores comparable to those of *Tasmanites* as demonstrated by Kjellstrom (1968). Most of the photomicrographs show homogeneous electron-dense walls with spongy or alveolar electron-clear regions toward the exterior (Jux 1971).

There is no compelling reason to assume even this amount of structure is primary; such textures could be degradational in origin. For example, he demonstrated this for *Gloeocapsomorpha prisca*. In cross section, the vesicle walls of *Baltisphaeridium longispinosum* and *Peteinosphaeridium trifurcatum* appear to be composed of concentric laminations, quite the opposite of a radial arrangement of pores Foster *et al.* (1989)

TEM studies of *Tasmanites* wall ultrastructure showed the radial canals quite clearly, confirming the observations known from light microscopy. In a brief paper on comparative microscopy, reported sectioning a Precambrian sphaeromorph acritarch whose wall was homogeneous in TEM view (Peat, 1981).
Because the original vesicle lumen was not evident, surmised that the walls had fused during diagenesis. Future TEM studies will need to address such taphonomic considerations if they are to become useful in acritarch systematics. With the exception of *Tasmanites*, the few acritarchs that have been examined have not shown any informative wall ultra-structure Guy-Ohlson (1988)

3.2. Processes

Processes are linear elements that protrude radially from the vesicle. Process morphology, number and distribution can be critical to the taxonomy of acritarchs. Processes are described in terms of their attachment to the vesicle wall, whether they are solid or hollow, their shape or primary form, the nature of the tip (distal end), and whether or not they are ornamented. Illustrates many of the basic types of processes found in the Acritarchs.

Processes can be hollow, solid, or hollow with a basal plug. Far from being trivial, these distinctions have been used to delineate genera that are, in all other respects, quite similar. Moczydlowska (1991) assigned Cambrian *Micrhystridium* species to two new genera, *Asteridium* and *Heliosphaeridium*, based on the presence of solid vs. hollow processes respectively. Following the recommendations of a basal plug in *Baltisphaeridium* is used to help distinguish it from taxa like *Solisphaeridium* and *Micrhystridium* Staplin et al. (1965).

Intraspecific morphological variation in acritarchs processes is well documented. Lister (1970) and Le Herisse (1989) described species of *Visbysphaera*, illustrating the range in morphological variation found on a single specimen. Many acanthomorph acritarch species exhibit a similarly wide range of morphological variation in branching patterns on individual specimens. Text-Figures 6B and 6C demonstrate this in *Diexallophasis denticulata* and *Multiplicisphaeridium* sp., which contain both branched and unbranched processes on a single individual.
3.3. TAXONOMY

Acritarchs taxonomy is plagued by a classic problem in systematics what are the natural limits of morphological variation in biological species, and how can we construct species taxa that correspond as closely as possible to biological species? A taxon as constructed by the paleontologist is inherently an abstraction of perceived natural groups. Thus, there is a distinction between a biological species, which occurs as a real entity in nature, and a species taxon which is a human construction intended only to correspond as closely as possible to the biological species.

Acritarchs represent only the encystment phase of an unknown algal life cycle. Cyst morphology may not always be map able one-to-one onto vegetative morphology. Thus, morphologically identical cysts could derive from separate algal species, and morphologically different cysts may have been produced by the same biological species. Similar conditions were demonstrated to have occurred in the higher plants in studies on sporangia and their in situ spores (Fanning et al. 1991).

Small differences in vesicle shape, along with variations in spine number, shape and length, form a plexus of homeomorphs (in the sense of point set topology). Even if number of spines is taken as a character for distinguishing these genera, the occurrence of small, adventitious spines makes absolute spine number difficult to use. Wall & Downie (1963) pointed out that collapsing the Veryhachium irregulare complex into one species would create confusion and require a completely new interpretation of Veryhachium and Micrhystridium Downie (1963)
Figure 4: Process variation within individual specimens.

A, *Visbysphaera pirifera* (from Le Herisse 1989, pi. 29, fig. 3)

B, *Diexallophasis denticulata* (from Le Herisse 1989, pi. 11, fig. 10)

C, *Multiplicisphaeridium* sp

Figure 5: Some Acritarchs taxa.

1. *Eupoikilofusa striatifera* var. *typical* Silurian;
2. *Eupoikilofusa cantabrica*;
3. *Leiofusa tumida*;
4. Unnamed acritarch possibly belonging to the Dinetro-morphitae;
5. *Deuntflia monospinosa* var. *robusta*; Silurian; Gotland, Sweden; 750x.
6. *Domasia bispinosa*; Silurian; Gotland, Sweden; 600x.
7. *Domasia trispinosa*; Silurian; Gotland, Sweden; 750x.
8. *Dactylofusa maranhensis*; Silurian; Saudi Arabia; 1000x.
9. *Lophosphaeridium galeatum*, detail showing complex ornament; Visby Formation, Lower Silurian; Gotland, Sweden; 2000x.
10. Lophosphaeridium galeatum; Visby Formation, Lower Silurian; Gotland, Sweden; 750x.
11. Cymbosphaeridium pilaris var. typicum, showing a macropy lome; Eke Formation, Ludlow (Upper Silurian-Gotland, Sweden; 750x.
12. Ellipsoidal acritarch with polar ornamentation of fine reticulate processes; Klabava Formation, Ordovician; Bohemia; 750x.
13. Arbusadidium filamentosum; Klabava Formation, Ordovician; Bohemia; 750x.
14. Dicrodiacrodium normale; Ordovician; Saudi Arabia; 750x.

3.4. CLASSIFICATION

The grouping of taxa into an ordered scheme forms the basis of biological classification. The purpose of biological classification is twofold: the demonstration of natural order and facilitation of communication. Phylogenetic ("natural" of some authors, e.g. Mendelson 1992) classifications purport to show evolutionary relationships by grouping natural taxa (sensu Wiley 1981, p. 71) using historical relation by descent, i.e. phylogeny. When phylogeny is unknown, as it is with the acritarchs, a phenetic (artificial) classification based on overall similarity in morphology may be constructed.

Phenetic classifications do not necessarily reveal evolutionary relationships among taxa although, to the extent that morphology reflects underlying genetic similarity, acritarchs groupings based on non-overlapping (disjunct) morphological features, may represent natural groups.

3.4.1. Phenetic classifications

Comparison of four published phenetic classifications presented in Table1. The fundamental structure presented by Downie et al. (1963) has been retained throughout subsequent modifications. Even Cramer & Diez (1979), whose views on taxonomic usage differs from those of most authors, agreed that Downie et al. were correct to use outline and symmetr. To define their basic groups. Cramer & Diez proposed = simplified version of the Downie et al. schema, dividing the acritarchs into three major units:

1) Sphaeromorphitae,
2) non-acanthomorphitic acritarchs
3) acanthomorphic: acritarchs.

The acanthomorphs were further subdivided in: Netromorphitae, Diacromorphitae and Acanthomorphitae. Their recommendations only lump previously defined groups and, consequently, do not represent a fundamental change in the classification.

Diver & Peat (1979) erected the group Cryptarcha, in which they placed the sphaeromorphs, cell cluster (Synaplomorphitae) and filamentous cyanobacter: (Nematomorphitae). This recommendation came out of concern that separate taxonomies are used for Precambrian and Paleozoic systematics. Using their classification, all simple spherical cells would be grouped together into the sphaeromorphs.

The following is an annotated summary of acritarch subgroups based on the Downie et al. schema. Certain subgroup; such as the Netromorphitae seem to be precisely characterized by simple descriptions of symmetry and outline. Other; contain genera that straddle the boundaries between subgroups, for example, between the Acanthomorphitae and the Polygonomorphitae. Diver & Peat (1979).

Figure 6:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dictyotidium faviforme; Lower Silurian; Gotland, Sweden; 750x.</td>
<td>2. Dictyotidium dictyotum; Visby Formation, Lower Silurian; Gotland, Sweden; 750x.</td>
<td></td>
</tr>
<tr>
<td>3. Cymatosphaera sp. cf. C. pauciplana; Ross Brook Formation, Llandovery (Lower Silurian); Nova Scotia, Canada; 750x.</td>
<td>4. Cymatosphaera mariae; Silurian; Gotland, Sweden; 750x.</td>
<td></td>
</tr>
<tr>
<td>5. Onondagella asymmetrica; Slite Formation, Wenlock (Silurian); Gotland, Sweden; 750x.</td>
<td>6. Onondagella asymmetrica; Slite Formation, Wenlock (Silurian); Gotland, Sweden; 750x.</td>
<td></td>
</tr>
<tr>
<td>7. Hoegklinia visbyensis; Visby Formation, Lower Silurian; Gotland, Sweden; 750x.</td>
<td>8. Estiastra barbata; Silurian; Gotland, Sweden; 750x.</td>
<td></td>
</tr>
<tr>
<td>9. Veryhachium trispinosum; Klabava Formation, upper Arenig (Ordovician); Bohemia; 500x.</td>
<td>10. Striatotheca principalis var. parva; Klabava Formation. Upper Arenig (Ordovician); Bohemia; 750x.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1: A comparison of phenetic acritarchs classifications, including some groups now considered to be prasinophytes.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group Acritarcha</td>
</tr>
<tr>
<td>Acanthomorphitae</td>
<td>Acanthomorphitae</td>
<td>Acanthomorphs</td>
<td>Acanthomorphitae</td>
</tr>
<tr>
<td>Polygonomorphitae</td>
<td>Polygonomorphitae</td>
<td>Polygonomorphs</td>
<td>Polygonomorphitae</td>
</tr>
<tr>
<td>Prismatomorphitae</td>
<td>Prismatomorphitae</td>
<td>Prismatomorph</td>
<td>Prismatomorphitae</td>
</tr>
<tr>
<td>Diacromorphitae</td>
<td>Diacromorphitae</td>
<td>Diacromorph</td>
<td>Diacromorphitae</td>
</tr>
<tr>
<td>Oomorphitae</td>
<td></td>
<td>Oomorph</td>
<td>Oomorphitae</td>
</tr>
<tr>
<td>Netromorphitae</td>
<td>Netromorphitae</td>
<td>Netromorph</td>
<td>Netromorphitae</td>
</tr>
<tr>
<td>Dinetromorphitae</td>
<td></td>
<td></td>
<td>Dinetromorphitae</td>
</tr>
<tr>
<td>Stephanomorphitae</td>
<td></td>
<td></td>
<td>Stephanomorphitae</td>
</tr>
<tr>
<td>Tasmanitae (Staplin et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteromorphitae</td>
<td>Pteromorphitae</td>
<td>Pteromorph</td>
<td>Pteromorphitae</td>
</tr>
<tr>
<td>Herkomorphitae</td>
<td>Herkomorphitae</td>
<td>Herkomorph</td>
<td>Herkomorphitae</td>
</tr>
</tbody>
</table>
3.4.2. Phylogenetic classifications

The relatively simple morphologies of many acritarchs make the problems of convergence particularly acute. Such problems need to be resolved if better natural classifications are to be constructed. Based on the research of Wall (1962) and Parke et al. (1978), among others, it became clear that some cysts previously characterized as acritarchs represent fossil phycomata belonging to the chlorophyte algal family Prasinophyceae. **Four morphological groups of acritarchs correspond to prasinophytes:**

1. *Tasrrumites* and related genera with their characteristic thick wall and radial pores (related to the Recent *Pachysphaera*, of which it is a senior synonym.
2. reticulate-murinate genera such as *Dictyotidium*, *Melikeriopalla*, *Cymatiosphaera*, *Daillydium*, *Duvernay-sphaera*, *Muraticavea* and *Polyedryxium*;
3. *Pterospermella*, characterized by a spherical central body with a single, large equatorial flange (ala), and considered to be ancestral to *Pterosperma*;

The history of attempts at a phylogenetic classification of acritarchs was reviewed by Downie (1973), and later by Tappan (1980). Removing the prasinophyte groups listed above, Downie’s attempt at an unofficial natural (phylogenetic) **classification can be condensed as follows:**

1. *Baitisphaeridium* group - acanthomorph acritarchs with large spines.
2. *Navifusa* group - only two genera, *Navifusa* and *Leiovalia* elongate, without spines.
3. Sphaeromorph acritarchs - a heterogeneous group characterized by simple ornamentation and simple wall structure. In the sphaeromorphs, I include spherical cysts enclosed within a vesicle (e.g. *Nucellosphearaeridium*) and clusters of attached spheres (*Synsphaeridium* sensu Timofeev).
4. *Micryhystridium*- *Veryhachium* groups - small vesicles with many (*Micryhystridium*) to few (*Veryhachium*) usually simple spines open to the body cavity. This is a very common and long-ranging group.
5. *Leiofusa* group - based on the genus *Leiofusa* and its morphological relative, *Deunffia*. These forms are elongate with various tapering ends forming spines.
6. *Acanthodiacrodium* group - the remnant of Timofeev’s, Diacrodiaceae, erected for ellipsoidal acritarchs with polar ornamentation.
7. *Visbysphaera* group - according to Downie, characterized by apically enclosed cyst and a tendency to form an inner cyst. He included three
SUBGROUPS: A Visbysphaera type, a Triangulina type, and a Diexallophasis type.

8. "Other acritarchs" - Downie placed the remaining 10% of acritarchs genera in this leftover category of unrelated forms.

A classification of the acritarchs based on inferred ancestor descendant relationship (phylogeny) is desirable. However, before this can be accomplished, much further analysis and comparison between related morphological groups must be attempted.

Chapter IV

BIOSTRATIGRAPHY
Chapter IV

BIOSTRATIGRAPHY

4.1. BIOSTRATIGRAPHY

Acritarchs have a history of speciation and extinction during their widespread distribution in time and space, with a resultant potential for biostratigraphic zonation. However, they have been only moderately useful as index fossils. Many acritarchs have long stratigraphic ranges. These include some common types such as *Veryhachium, Leiosphaeridia* and *Micrhystridium*. Such genera have large numbers of species that can be difficult to distinguish. Because morphological variants grade into one another (e.g. the *Veryhachium valiente* V. *lairdi* complex), it is difficult to establish a consistent concept of the amount of phenotypic variation in natural species.
Without a comprehensive understanding of the extent to which individual acritarchs are restricted to particular environments, it is difficult to use them as zonal index fossils. Even the simple comparison of distributions of taxa preserved in carbonates vs. those in siliciclastics has not been accomplished. Fortey & Mellish (1992) asserted that early Ordovician acritarchs should be useful for intercontinental correlation because they do not show clear differentiation into paleogeographic provinces.

Acritarchs are presently useful for correlation in those instances where conventional index fossils are lacking. Most acritarchs assemblages can be used to infer age to the level of epoch, even when populated by moderately long-ranging taxa. Where they occur with spores and cryptospores, acritarchs have great potential throughout the lower and middle Paleozoic for correlation between marine and non-marine strata.

4.2. Diversity trends

Long term taxonomic trends in acritarchs evolution are expressed in two ways: changes in diversity and changes in taxonomic composition over time. All analyses of acritarchs diversity reveal a similar basic trend: acritarchs show a singular peak in ataxic diversity in the mid Paleozoic that terminates at the Devonian-Carboniferous boundary. They persist throughout the remainder of the Phanerozoic with fewer taxa, and perhaps in much reduced numbers. This scenario is supported by both species and genus curves in Tappan (1980).

Figure 7: shows acritarchs generic diversity tabulated for each geological period, normalized for period length (which yields genera per Ma), and plotted on a scale of absolute time. It reveals a dramatic drop in diversity from almost 4 genera per Ma at the end of the Devonian to less than 0.5 genera per Ma during the Carboniferous-Triassic interval. There is essentially no subsequent recovery
from this drop. The gradual increase in the Tertiary to almost 2 genera per Ma is probably due to the sampling bias of more recent strata, and does not represent an evolutionary return of the acritarchs.

Species level diversity trends were examined by plotting mono specific genera from the compilation of Fen some et al. (1990). The resultant species diversity curve (Text-Fig. 8) parallels the generic diversity curves in Text-Figure 7. Another look at species fluctuations was derived from the regional range charts of acritarchs species published by Downie (1984).

This Single evolutionary pulse in the phytoplankton was over by the Mississippian. Wicander (1975) also documented this drop in a section from Ohio in which both absolute phytoplankton abundance and number of species per sample decline close to the boundary. More such studies are needed to remove possible lithofacies biases that affect occurrence and preservation, but the notion of a dramatic decline of the acritarchs at the end of the Devonian is consistently supported by all data examined thus far Wicander (1975).

4.3. Stratophenetic trends

Le Herisse (1989), as discussed earlier ("Taxonomy"), recognized Hapsidopalla and Naevisphaeridium as possible evolutionary offshoots of Ammonidium. These genera share the same vesicle shape and process type, but they differ in the surficial expression of wall structure Le Herisse (1989).

Lister (1970) figured a stratophenetic trend in Filisphaeridium brevispinosum in which process length and density increased in two punctuated steps within an Upper Silurian sequence. Significantly, he did not feel that this "trend" was sufficient to establish separate species for the differing morph types Lister (1970).
Figure 7: Distribution of acritarch genera over time. Values normalized to genera per Ma using the time scale of Harland et al. (1990) and plotted per geological period. The Precambrian value was determined using 1400 Ma as the time of the origin of the acritarchs.

Figure 8: Acritarchs species diversity over time. Monospecific generic diversity normalized per period using time scale of Harland et al. (1990). The curve expresses species per Ma plotted per period. Data derived from Fensome et al. (1990).

Figure 9: Number of acritarch species vs. time, from the data of Downie (1984), derived largely from the United Kingdom. Data are plotted per stratigraphic unitas in Downie (1984) and are not normalized (each interval represents a different time span).

4.4. PALEOECOLOGY AND PALEOGEOGRAPHY

Williams & Sarjeant (1967) concluded that acritarchs are not good depth indicators, which makes sense for a group whose physiological requirement for photosynthesis limits it to the photic zone. However, in combination with known terrestrially-derived palynomorphs acritarchs have been shown to indicate proximity to shoreline. His samples indicated that sphaeromorph abundance
increased distally, gracile acanthomorphs were rare within 2 km of the reefs, and robust acanthomorphs and polyhedral (prasinophyte) forms occurred more than 7 km from real complexes Williams & Sarjeant (1967).

In a study of Jurassic microplankton, Wall (1965) reinforced the notion that open marine conditions produced the most diverse acritarch assemblages. He found that "...populations dominated strongly by single species were derived from algae inhabiting inshore waters, whereas the species-rich, heterogeneous assemblages were accumulated in an offshore environment." Shallow depths "increase the likelihood that mono-specific blooms will be preserved in bottom sediments, since in deeper waters more mixing occurs during cyst fallout (Strother1994).

Smith & Saunders (1970) examined acritarchs from several sedimentologically defined depositional settings in the Tuscarora and Rose Hill Formations of central Pennsylvania. They claimed that preservation improved in more open marine settings, that acritarch distribution was in part controlled by prevailing current direction and that acritarchs did not occur in fluvial deposits. However, they did not identify taxa, reconstruct assemblages or propose any acritarch-based model. The Tuscarora Formation, which they claimed to be devoid of acritarchs (Smith & Saunders 1970, p. 330), is now known to contain a rich palynoflora (Strother & Traverse 1979; Johnson 1985).

Doming (1981) presented a schematic model of diversity and morphotype variation over proximal/distal gradients in the Welsh Basin. He described three assemblage types:

1. a low diversity, near shore assemblage of 5-15 species per sample dominated by *Protoleiosphaeridium* (leiospheres), but also including *Veryhachium, Micrhystridium* and *Evittia*.

2. an offshore assemblage with 10 to 90 species per sample, but without a single dominant taxon.
3. A deep water assemblage of low diversity (2-15 species) and similar composition to the near shore assemblage Doming (1981).

Richardson & Rasul (1990) attempted to relate assemblage composition of acritarchs and other palynomorphs to depositional setting. They formulated an inshore index based on the ratio between sphaeromorphs + tasmanites + micryhstridia, and sphaeromorphs + tasmanites + micryhstridia + netromorphs + acanthomorphs + polygonomorphs. In combination with a marine influence index that included non-acritarch palynomorphs, they were able to trace transgressive/regressive shifts in depositional settings during Ludlow and Pridoli time in the Welsh Basin Richardson and et al. 1990)

Acritarchs are found in large numbers, and the taxonomic diversity of individual assemblages can be quite high. Perhaps a reasonable conclusion is that different taxa will become useful for the contrasting functions of paleoecological, biostratigraphic and paleogeographic analyses. The application of acritarch distributions to more generalized analyses of global and regional studies of the Paleozoic oceans will undoubtedly become more important in future work.
Case study from the Eocene of Egypt

(1) Palynology processing:

Four samples have been selected from the Eocene sediments in the Fayoum area, Egypt in purpose to test their palynofloral content. The standard palynological techniques have been applied for all samples. The two marly samples from Gebel Mudarawa are being productive in terms of dinoflagellates cysts and other palynomorphs. In contrast, the three samples from Gebel Na’alon are being barren from palynomorphs but contain some palynodebris and amorphous organic matters (AOM) (Fig. 1).
Figure 10: A photograph of the Mudawara Mt. Fayoum Depression, Egypt.

Methods

A. Initial processes: The palynological preparation of the samples began with taking suitable amount of each sample, if available 5-10g were taken.

B. Demineralisation:

1. Removal of carbonates: Up to 50 ml of 35 % HCl was added to dissolve any carbonates. Care must be taken to ensure that all carbonates have been dissolved to avoid calcium fluoride precipitation. The acid was siphoned off and the samples were washed several times with distilled water until neutral, calibrated litmus paper was used to test neutrality of the sample before further treatment.
2. **Removal of silicates:** This procedure requires care because HF has extremely corrosive and toxic nature. So, it should be carried out in a well-ventilated laboratory with an efficient fume cupboard and wearing protective clothes, respiratory filter, clear plastic eyeglasses and rubber gloves. In polypropylene cups, the samples were macerated in 30 to 50 ml of cold concentrated 48 % HF for 48 hrs. to 72 hrs. to dissolve all silicates. The samples were occasionally agitated and stirred with a polypropylene stirring rod. If the sample is highly siliceous excess of HF can be added. The residue was washed several times with distilled water until neutrality. The residue was treated, if necessary, with 10 % HCl to remove any fluorides (CaF$_{2}$) which might have formed in the residue. It can be heated and then washed as stated before.

3. **Sieving:** Before sieving, residues were treated for a few seconds in an ultrasonic bath and for removing any UN dissolved heavy minerals by decantation. Material coarser than 125 μm was removed by brass sieving. The fine fractions (< 125 μm) were sieved and washed through a 10 μm nylon sieve.

C. **Oxidation:** The organic residue contains in addition to the desired microfossils, plant and animal tissues fragment, fine material of uncertain origin and wood fragments. Unless coarse enough to be removed by sieving, the wood fragments, being resistant to oxidation than other organic matter and may be concentrated by a combined process of oxidation and filtration. Schulz’s solution (mixture of HNO$_{3}$ + KClO$_{3}$ in a proportion of 50% to 50%) was used to remove amorphous organic material at least partly from the residue.

D. **Removal of oxidation products:** Adding NaOH solution (7.5 %) for few a seconds and washing two times at least with distilled water. This was carried out by using MRS (Modified Reissinger System) in fume cupboard (Traverse, 1988).
E. **Staining**: Since most palynomorphs are colourless to pale yellowish brown, it is advantageous to artificially stain them. The residues were stained with red Safranin “O” (1 g. of Safranin “O” + 100 ml of 2 % NaOH), using an ultrasonic bath for a few seconds. Safranin “O” stain does not mask the brown pigment of the protoperidinacean cysts but does enhance the details in pale cysts (de Verteuil & Norris, 1992). Then residues were sieved using a 10 and 20μm mesh.

F. **Slide preparation**: 2 slides of each sample were made using glycerine jelly as mounting media. Using glass slides (26 x 76 mm) and glass cover slips (24 x 50 mm). Ethyl alcohol and soapy solution were used for cleaning slides.

G. **Examination**: The prepared slides examined by traversing each slide at magnification 200 using microscope. Further detailed taxonomic work was carried out at higher magnifications utilising light microscopical and digital photographic facilities. Preservation varies from good to poor.

H. **Photography**: Well preserved specimens were photographed using a Carl-Zeiss (Axioplan 2) microscope fitted with a Sony digital photo camera DKC-5000. Interference contrast photos were taken by a Leica DMR Microscope fitted with a Leica DC300 digital camera, housed in the Department of Geography, Cambridge University. An England Finder reference follows the sample and slide number for each specimen illustrated in plates to indicate its position.
Fig. 11: Basics of palynological sample processing (Soliman, 2006).
Plate of the recovered acritarchs from the studied samples.

1- A barren slide from Naaloon area rich with quartz crystals.
2- A slide from Mudawara rich amorphous organic material and palynomorphs.
3-4 Micrhystridium sp.
Flow chart for processing palynological samples

Sample
(shale, marl, limestone, sandy facies, and all the encountered lithology)

Bonehole samples cleaned from drilling mud and the surface one is scraped to remove weathered surface

HCl (35%) for at least 24 hrs
Decant and wash three times with distilled water to neutral

Dried, crushed to less than 2 mm and weighted (5-30 gm)

HF (40%) for at least 48 hrs
Decant and wash three times with distilled water to neutral

Residue is ready to prepare palynofacies slides

Sieve through 15 μm with distilled water

Oxidation using diluted HNO₃ (“applied for some samples”)

Wash with diluted KOH to remove oxidation product if needed

Solve through 15 μm
Solve through 20 or 30 μm

Glas slides (25x75x1 mm) and coverslips (24 x 50 mm) are mounted with glycerin jelly and sealed with nail varnish

SEM skids (12 mm)

Residues stored with distilled water and crops of phosphol

Pollen

Acrorhacks

Dinoflagellate cyst
(2) **Calcareous Nannoplankton processing:**

For the calcareous nannofossil study, the same samples were processed by smear slide preparation from raw sediments samples. Smear slides were examined by using polarized microscope with 1250 x magnification. Due to the small size of nannofossils, special care is taken for cleaning laboratory ware in order to prevent the chances of contamination.

Samples were processed by using the standard preparation technique in Bowen and Young (1998) **with the following minor modification:**

1) A small sample, approximately thumbnail size, was scraped from the surface and gently crushed in a mortar.

2) The powdered sediments was placed into a bottle and soaked in distilled water.

3) The sample was agitated and left to settle.

4) By using a plastic pipette, a few drops of the suspended particulate matter are put on a glass side and dried on a hot plate.

5) When the sediments were dry, the mounting medium such as Canada balsam was added to the cover slip. The latter was pressed down onto the sample to remove air bubbles.

6) The slide was latter cooked on a hot plate at about 120 °C for 1-2 minutes, the slides were labeled and left to cure the adhesive and to make the slide more durable and easier to store.

7) High quality smear slide was prepared from each sample, for nannofossil viewing and photographing.
1. **Reticulofenestra umbilica** (Levin, 1965)
2. **Reticulofenestra hampdenensis** Edwards (1973a)
3. **Cribrocentrum reticulatum** (Gartner & Smith, 1967)
4. **Helicosphaera lophota** Bramlette & Sullivan (1961)
5. **Braarudosphaera bigelowii** (Gran & Braarud, 1935)
6. **Coccolithus pelagis** (Wallich, 1877)
7. **Reticulofenestra hampdenensis** Edwards (1973a)
8. **Ericsonia formosa** (Kamptner, 1963)
10. **Pontosphaera multipora** (Kamptner, 1948)
11. **Discoaster saipanensis** Bramlette & Riedel (1954)

Proposal for calcareous nannofossil

Introduction:

1. Definition-Nomenclature-Origin-Size.
2. Biology of calcareous nannofossils.
4. Sample preparation for calcareous nannofossils and requirements.
5. Importance and applications of calcareous nannofossils.

Different morphologies of calcareous nannofossils:

(Characteristic Features of different families).

Calcareous nannofossil taxa throught Geologic Time:

1. Jurassic calcareous nannofossils.
2. Cretaceous calcareous nannofossils.
3. Calcareous nannofossil changes across the K/P boundary.
4. Paleocene calcareous nannofossils.
5. Changes of calcareous nannofossils across the P/E boundary.
7. Calcareous nannofossil remarks at the Eocene/Oligocene boundary.
8. Calcareous nannofossils of the Oligocene.
9. Calcareous nannofossil remarks at the Oligocene/Miocene boundary.
10. Miocene calcareous nannofossils.
11. Calcareous nannofossil remarks around the Miocene/Pliocene boundary.
13. Quaternary calcareous nannofossils.

Paleoecology, paleoclimatology and paleobiogeography of calcareous nannofossils:

Calcareous nannofossil evolutionary trends:

References

Summary
Summary

The morphology of the acritarchs is diverse, presumably reflecting their heterogeneous origins. Most individuals consist of a single, hollow vesicle (or theca) that may be ornamented with processes (most often spines or muri) and surficial sculpturing elements. Vesicle symmetry varies from spherical or radial to bipolar to irregular.

In 1963, Evitt suggested removing from the Hystrichosphaerida those microfossils clearly related to the dinoflagellates. The remaining problematic taxa were labelled acritarchs. Evitt's suggestion was widely accepted and has proved useful.

Most acritarchs consist of an organic-walled sac (also called the vesicle or central body), which may be modified by outgrowths of linear elements (processes) and / or by planar membranes forming septa, muri, wings or a velum. Processes and vesicle walls may be further modified by surficial sculpture such as grana, knobs or small spines, rugulae, or striae. Sculptural elements in the acritarchs are similar to those of pollen grains, spores and dinoflagellates consequently.

Acritarchs are found in large numbers, and the taxonomic diversity of individual assemblages can be quite high. Perhaps a reasonable conclusion is that different taxa will become useful for the contrasting functions of paleoecological, biostratigraphic and paleogeographic analyses. The application of acritarch distributions to more generalized analyses of global and regional studies of the Paleozoic oceans will undoubtedly become more important in future work. Acritarchs also have great potential in paleogeographic and paleoenvironmental studies, but our lack of understanding of systematic relationships between acritarchs and the algae make critical paleoecological inferences difficult.
REFERENCES
References

Evolution of the oceanic plankton; Earth-Science Reviews, 9:207-240.

Arabic summery
الأكريتاش عبارة عن حويصلة ذات جدار عضوي أجوف مجهرى، وهي مصطلح يأتي من كلمتين يونانيتين: "acritos" (غير معروف) و"بدائي" (الأصل). تم العثور على الأكريتاش في الرواسب البحرية حتى الوقت الحاضر، ولكن كانت أكثر وفرة وتتنوع في البروترزويك وحقب الحياة القديمة. انخفضت تنوءها في الدهر الوسيط.

وتتكون من حويصلة واحدة حيث تختلف تماشل الحويصلة من كروية أو شعاعية إلى ثنائية القطب أو تكون غير منتظمة الشكل ويتكون حجم الأكريتاش حيث تختلف من 10 ميكرون إلى 1 مم في الحجم، ولكن معظم الأنواع تراوح 15-80 ميكرون. والأكريتاش هي مصدر هام للمعلومات البيولوجية القديمة والأعداد الهائلة منها تصل على الحفاظ على سجل الصخور وجعلها مفيدة للدراسات البيوستراتجارية والبيولوجية القديمة.

التاريخ المبكر للأكريتاش تم توثيقه جيداً من قبل العديد من الباحثين، وعلى سبيل المثال دراسة الأكريتاش في أمريكا الشمالية حيث أعطت الكثير من البحوث التي استخدامها (مارتن، 1993) في دراساته على الأكريتاش. و في عام 1963، اقترح Evitt إزالة Hystrichosphaerida من تلك الأحافير الدقيقة واتخذ اقتراح Evitt مقبول.

وتصنف الأكريتاش بنقاط إلى نوعين:

1. التصنيفات Phenetic
 - في هذا التصنيف كالدائم نادر وأخرون (1963) هناك أربعة وحدات رئيسية:
 a. Sphaeromorphitae,
 b. Non-acanthomorphitic acritarchs
 c. Acanthomorphic acritarchs.

2. التصنيفات Phylogenetic
 - الأشكال التشريحية بسيطة نسبياً من العديد من الأكريتاش جعل التقارب حاداً بشكل خاص، بحيث اذكروا أن هذه المشاكل التي يعترفون بها إذا التصنيفات الطبيعية الأفضل هي التي يتم بادئاها واستنادا إليها وجاء كريمر ودييتس (1979) وقسم الأكريتاش إلى ثلاث:
 1. (ALA) وأجناس ذات صلة بهم مع جدار سميك مميزة والمسمى شعاعي Tasrrumites
 2. Cymatiosphaera - Melikeriopalla - Dictyotidium مثل murinate من Duvernay-sphaera، Daillydium
 3. Pterospermella، من خلال هيئة مركزية كروية تتميز مع ذلك، شفة واحدة كبيرة الاستواء
 4. micrhystridium، Leiosphaeridia corre sponding إلى Halosphaera

الأكريتاش لديهم تاريخ من النشاء والانقراض خلال توزيعها كانت على انتشار واسع في الزمان والمكان، ومع احتكاك الناتجة عن تسميم المناطق الطبقية الحيوية. ومع ذلك، فقد كانت معتدلة فقط مفيدة للحيوانات المرفعة. العديد من الأكريتاش لديهم طبقات طبقية طويلة ومعظم هذه الأنواع الشائعة مثل Veryhachium، Leiosphaeridia، Micrhystridium التي يمكن أن تكون من الصعب تميزها. لأن المتغيرات المورفولوجية تختلف من واحده إلى أخرى (مثل

فإنها من الصعب تحديد مفهوم ثابت من كمية التباين المظهر في الأنواع الطبيعية. (Veryhachium