Molecular Spectroscopy

Lect 1: General Introduction

Prof. Tarek A. Fayed

Spectroscopy and Electromagnetic Radiations

<u>Spectroscopy:</u> It involves the investigation of the interactions of electromagnetic radiations <u>(light)</u> with matter (atoms or molecules) and explanation of the spectral pattern.

<u>Spectra:</u> It show how the interaction between electromagnetic radiation and the matter varies with the frequency of the electromagnetic radiation <u>(Energy)</u>.

Applications of Spectroscopy

The Role of Spectroscopy

Electromagnetic Radiation (e.m.r.)

Light can be described in two complementary ways...

Wave picture:

Consists of oscillating electric and magnetic fields

Particle picture: consists of "packets" of light, photons, each with energy E = hv

h – Planck's constant

Properties of electromagnetic radiations

As waves, electromagnetic radiations are characterized by:

- λ = wavelength (length of single wave), y = amplitude
- C = speed of light in a vacuum
- v = frequency (number of cycles passing a certain point per second)

in Hertz

 $\widetilde{\nu} = 1/\lambda$ (in cm) wavenumber = a number of waves that fit a centimetre, units = cm⁻¹

The Electromagnetic Spectrum

Quantization of Energy

Energy 'units': *J*, *cal*, *Hz*, *cm*-⁴, *eV* Which units do we use in NMR, UV, IR spectroscopy?

Molecular Energy Levels and interactions between light and matter

Radiations can be absorbed or emitted if the molecule changes any of its energy states

Molecular Energies

Molecules can have many different types of energy

These energies are quantised, giving a set of energy levels:

Interactions with Matter

Radio-wave; Changes nuclear and electron spin Changes molecular rotations Microwave: Changes molecular vibrations Infrared; Causes transition of outer shell Visible; Ultraviolet; electrons Causes molecular dissociation Causes transition of inner shell X-ray; electrons Causes nuclear transitions γ -ray;

Low frequency Long wavelength Low quantum energy

transparent to that radiation.

High frequency Short wavelength High quantum energy

	AM Radio	Short wave radio	Television FM radio	Microwaves radar	Millimeter waves, telemetry	Inrrared Visible light	Ultraviolet	X-rays Gamma rays	
Body is transparent. You are commonly penetrated by radiation in this range from local radio and TV stations and other forms of communication.		Almost transparent. Tiny amount of absorption rotates molecules and contributes heating, but no effects distinguishable from heating.		Strongly absor because it cau electron jumps higher levels. I enough energy ionize. Stronger absorption vibrates molecules.	rbed uses s to Not y to Very abso	Almost transparent since quantum energies so high that atoms can't absorb and remain intact. Ionizes. strongly rbed by			
the radiation must be absorbed. To be absorbed, there must be quantum energy level pairs which match the photon energy of the radiation. If these energy level pairs are not available in a given frequency range, then the material will be						Physiological effect is heating since it is putting molecules into vibrational motion.	elect Does skin. can i	electron jumps. Doesn't penetrate skin. Upper end can ionize.	

Origin of spectral lines in molecular spectroscopy: absorption or emission of a photon when the energy of the molecule changes:

- electronic transitions
- rotational states change
- vibrational states change

Absorption spectroscopy:

 $\Delta E = h\nu \quad (4.1)$

Emission spectroscopy

Emission or absorption spectroscopy:

- give the same information about the energy levels
- practical considerations determine which technique is better to use.

Basic components of Spectrometer

How the spectra are measured?

What is Spectroscopy?

The study of the interchange of energy between electromagnetic radiation and matter.

Spectra recorded by the Spectrometer

White-light covering a wide range of frequencies is passed through a sample cell and then to a monochromator (a prism or grating). Detector (photodiode array) records the intensity of transmitted light as a function of frequency or records the absorbance as a function of wavelength or wavenumber. Frequency (v)

T%

 λ = Wavelength.

Spectral features

- Position of bands
- Width of spectral lines
- Intensity of spectral lines

Spectral features

1. Bands Position: It is determined by the wavelengths or the frequencies at which the molecule absorb, it depends on its structural features (Functional groups), as well as its environment (solvent used). It is determined by the spacing between the energy levels (i.e energy difference between energy levels involved in the transition) not by the energy of the levels themselves.

- 2. Width of spectral line: broadening is caused by;
- Collisional broadening (due to molecular interactions).
- Doppler broadening (molecular interactions in case of gases).
- Lifetime broadening ($\delta E. \delta t \sim h/2\pi$)
- 3. Intensity of spectral lines: It tells us about the;
- Transition probability (transition is allowed or forbidden).
- Population of states.
- Path length of the sample $(-\log (I/I_0) = A = \epsilon l c)$

Aims of spectroscopy

Molecular spectra can be used to make;

- 1- Qualitative analysis of a new substance or mixture (to identify the present molecular species).
- 2. Quantitative determination of a known substance (using Beer-Lamber law).
- 3. Structural characterization of a substance (from the energy levels and various transitions establish the physical and chemical properties of the substance).

The Role of Spectroscopy

2. <u>Width of spectral lines:</u> (half- and base band width)

Spectral band broadening is due to: i. Collision broadening

Elastic collision:

No energy from internal degree of freedom is transferred during the collision. **Inelastic collision:**

The excitation energy is transferred from the excited molecule A* to a collision partner B

• The collision of molecules causes the excited state to revert to the ground state, shorten the lifetimes of the excited state and leads to broadening of the associated spectral lines.

<u>ii. Doppler broadening</u>

- Occurs in gaseous state, and increases with temperature due to increasing differences between the distribution of velocities of molecules.
- The radiation frequency is shifted when the absorbing or emitting molecule is moving towards or away from the observer (light detector).
- Light source emits light photons with frequency v_o, the molecule is moving toward or away from the stationary observer with velocity (± v), then the observer measure the frequency not as v_o but as v⁻ where;

$$\boldsymbol{\upsilon}^{-} = \boldsymbol{\upsilon}_{0} \left(1 \pm \frac{\mathbf{v}}{c} \right)$$

iii. Life-time broadening

 If a system exists in an energy state with energy (*E*) for a limited time (τ = lifetime of the state). The energy of that state will be uncertain to an extent (δE).

According to Heisenberg Uncertainty Principle;

$$\delta(E) \times \delta(t) \approx \frac{h}{2\pi} = \hbar$$

$$\delta(t) = uncertainty in time = \tau$$

Lifetime broadening in frequency = $\frac{1}{2 \pi \tau}$

Where τ is the lifetime

<u>example</u>

 Calculate the lifetime broadening in cm⁻¹ for an excited state with lifetime (τ = 1p.s.).

<u>Note</u>: $1p.s = 0^{-12} s.$

Lifetime broadening in wavenumber = $\frac{1}{2 \pi c \tau}$ = $\frac{1}{2 \times 3.14 \times 2.998 \times 10^{10} \times 1 \times 10^{-12}}$ The intensity of the spectral

line It is governed by;

1.Transition probability from which selection rules can be obtained.

- 2. Population of the energy levels.
- 3. Path length of the sample.

Transition probability is governed by transition dipole moment $\left| \vec{M} \right|$

Transition dipole moment gives the probability of a transition

between two states (1) and (2) as a result of photon resonance $E_2 - E_1 = h c \overline{U}$ absorption obeying Bohr-Einstein conditions:

The maximum value of molar absorption coefficient (ε_{max}) , oscillator strength (f -number) and integrated absorption coefficient (A) are taken as indications for the intensity of transition.

$$A = \int_{band} \varepsilon_{(\overline{\upsilon})} \, d\overline{\upsilon}$$

Oscillator strength (f): kth If we regard the molecule as oscillating dipole then the oscillator strength (*f*) is defied as the number Ith → kth of virtual oscillators equivalent to transitions from $I^{th} \rightarrow k^{th}$ electronic Ith state in quantum theory. $f = 4.32 \times 10^{-9} \int \varepsilon_{(\overline{\nu})} d\overline{\nu}$ $\mathcal{E}_{(\overline{\upsilon}_{max})}$ band If the band has Gaussian $\overline{\upsilon}_{\mathrm{max}}$ $\varepsilon_{\rm max}/2$ hape: $\mathcal{E}_{(\overline{\upsilon})} \ d\overline{\upsilon} = \mathcal{E}_{(\overline{\upsilon}_{\max})} \times \Delta \overline{\upsilon}_{1/2}$ band 1) $= \varepsilon_{(\overline{\nu}_{\max})} \times (band width)$ Band width **Allowed transition** ≥ 1 f << 1, (10⁻² – 10⁻⁴) forbidden transition

Population of the energy levels

<u>Summary</u>

1. Electromagnetic spectrum

2. Quantization of energy - Bohr frequency condition

$$\Delta E = E_2 - E_1 = h \cdot v = h \cdot c \cdot \widetilde{v}$$

- 3. Energy 'units': J, cal, Hz, cm⁻¹, eV
- 4. Energy levels in molecules
- 5. Spectral features

position of bands width of spectral lines intensity of spectral lines

6. Population of the energy levels Boltzmann distribution

$$\frac{N_2}{N_1} = e^{-(\Delta E/kT)}$$

Which units do we use in NMR, UV, IR spectroscopy? Can you convert 2000 cm⁻¹ into m⁻¹?