Accelerators

Lecture (1)

Text books

- An Introduction to the Physics of Particle Accelerators by Mario Conte
- The physics of particle accelerator physics by Klaus
- An Introduction to the Physics of High Energy Accelerators by Edwards
- RF Linear Accelerators by Thomas Wangler
-Fundamentals of Beam Physics by Rosenzwing
-Particle Accelerator Physics by Wiedmann
-Handbook of Accelerator Physics and Engineering by Alex Chao
- An Introduction to Beam Physics by Martin Berz

Basic relativity review

-Relativistic parameters

$$
\begin{gathered}
\beta=\frac{v}{c} \\
\beta=\sqrt{1-1 / \gamma^{2}}
\end{gathered}
$$

- Total energy (E), momentum (p) and kinetic energy (k)

$$
\begin{gathered}
E^{2}=p^{2} c^{2}+m_{0}{ }^{2} c^{4} \\
\mathrm{E}=\gamma m_{0} c^{2} \\
p=\gamma m_{0} c \\
k=(\gamma-1) m_{0} c^{2}
\end{gathered}
$$

Types of accelerators

- Accelerators can be classified into 3 groups

1) DC accelerators

Direct voltage accelerators, Van de Graff and Cockcroft-Walton cascade generator
2) Linear accelerators

Wideröe's tube and Alvarez drift tube.
3) Circular accelerators

Cyclotron, Betatron, Microtron and Synchorotron.

DC accelerators

1- Direct Voltage accelerator

DC accelerators (cont.)

2 - The Cockcroft-Walton cascade generator

DC accelerators (cont.)

3- Van de Graff generator

DC accelerators (cont.)

4- Tandem Van de Graff

Linear accelerators

-Wideröe's tube

ion source

$E_{i}=i q U_{\max } \sin \psi_{0}$

$$
E_{i}=\frac{1}{2} m V_{i}^{2}
$$

beam

$$
\begin{aligned}
& L_{i}=\frac{v_{i} \tau_{R F}}{2}=\frac{v_{i}}{2 v_{R F}} \\
& L_{i}=\frac{1}{v_{R F}} \frac{i q v_{m a x} \sin \psi_{0}}{2 m}
\end{aligned}
$$

Linear accelerators

-Wideröe's tube

Synchronization of the particle motion

$$
U(t)=U_{\max } \sin \psi_{0}
$$

When $\quad \psi_{0}=\pi / 2$
The peak voltage is $U_{\max }$

When $\psi_{0}<\pi / 2$
then $U_{e f f}<U_{\max }$
and
$U_{e f f}^{\prime}=U_{m a x} \sin \left(\psi_{0}-\Delta \psi\right)$

Circular accelerators

-The cyclotron

Circular accelerators

The cyclotron (continue)

Circular accelerators (cont.)

-The race track Microtron

Circumference of the orbit increases by $\mathrm{k} \lambda_{R F}$

MAMI is the largest and located in university of Mainz (820 MeV)

$$
\Delta E=k \frac{e c^{2} B}{2 \pi \nu_{\mathrm{RF}}} .
$$

