Accelerators

Lecture (1)

Text books

- An Introduction to the Physics of Particle Accelerators by Mario Conte
- The physics of particle accelerator physics by Klaus
- An Introduction to the Physics of High Energy Accelerators by Edwards
- RF Linear Accelerators by Thomas Wangler
- Fundamentals of Beam Physics by Rosenzwing
- Particle Accelerator Physics by Wiedmann
- Handbook of Accelerator Physics and Engineering by Alex Chao
- An Introduction to Beam Physics by Martin Berz

Basic relativity review

Relativistic parameters

$$\beta = \frac{v}{c} \qquad \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{E}{E_0}$$
$$\beta = \sqrt{1 - 1/\gamma^2}$$

Total energy (E), momentum (p) and kinetic energy (k) $E^{2} = p^{2}c^{2} + m_{0}^{2}c^{4}$ $E = \gamma m_{0}c^{2}$ $p = \gamma m_{0}c$ $k = (\gamma - 1)m_{0}c^{2}$

Types of accelerators

Accelerators can be classified into 3 groups

1) DC accelerators Direct voltage accelerators, Van de Graff and Cockcroft-Walton cascade generator

2) Linear accelerators Wideröe's tube and Alvarez drift tube.

3) Circular accelerators Cyclotron, Betatron, Microtron and Synchorotron.

DC accelerators

1- Direct Voltage accelerator

DC accelerators (cont.)

2 - The Cockcroft-Walton cascade generator

DC accelerators (cont.)

3- Van de Graff generator

DC accelerators (cont.)

4- Tandem Van de Graff

Linear accelerators

Wideröe's tube

Linear accelerators

Wideröe's tube

Synchronization of the particle motion

Circular accelerators

The cyclotron

Circular accelerators

• The cyclotron (continue)

Circular accelerators (cont.)

The race track Microtron

Circumference of the orbit increases by $k\lambda_{RF}$

