SOME REMARKS ON TOTAL CHROMATIC NUMBER

By

E.A.EL Sakhawi

Faculty of Science, Ain Shams University

Received: 2-7-1996

ABSTRACT

We determine here the total chromatic number of: The conjunction of P_n and P_m , the conjunction of P_m and P_m , the conjunction of P_m and P_m , the conjunction of P_m and P_m , the conjunction of P_m , the conjunction of P_m , the conjunction of P_m , and P_m , the conjunction of P_m , and P_m , wheels, helms, webs, trees and the square of a cycle. We study the influence of elementary homeomorphism on the chromatic number of P_m , P_m and P_m . Finally we define uniquely totally coloured graphs and we show that all paths and circuits P_m , P_m mad 3 are uniquely totally coloured.

INTRODUCTION

An element of a graph G = (V, E) is a vertex or an edge. In a total colouring two elements of G which are either adiacent or incident, must have different colours. The minimum number of colours needed for a total colouring of G is the total chromatic number X''(G). We follow the notation of [7], in particular $\Delta = \Delta(G)$ is the maximum degree of the graph. The total colouring was independently introduced by Vizing [9] and Behzad [1], [2]. Both Behzad and Vizing conjectured that every graph G satisfies the following inequaliting

$$\Delta + 1 \leq X''(G) \leq \Delta + 2$$

We call graphs which need $\Delta + 1$ colours type 1 and those which need at least $\Delta + 2$ colours type 2. The lower bound of X"(G) is clearly exact. An obvious upper bound is $2\Delta + 1$. There are so many interesting results concerning total chromatic numbers such as those in [3], [4], [6] while [5] represents much interesting results on edge colouring which is very important basis for total colouring.

Theorem 1

(i) $P_m ^ P_n$ is of type 1, $(m,n) \neq (2,2)$

(ii) $P_2 \land C_n$ is of type 1 if and only if $n = 0 \mod 3$

(iii) $P_m \cap C_n$, m > 3 is of type 1

Proof

i- For (m,n)=(2,2), we have the graph $P_2 P_2$ which is isomorphic to $2P_2$, of typ 2. For m=2, $n\ge 3$, the graph $P_2 P_n$ is isomorphic to $2P_n$, of type 1. For $(m,n)\ne (2,2)$, this graph consists of two disjoint identical subgraphs of the cartesian product of P_m and P_n . According to [8], this is of type 1. Figure 1 shows the colouring of $P_{10} P_8$

Figure 1

2C_n :n is even

(ii) $P_2 ^C_n = [$ $C_{2n} : n \text{ is odd}$

This can be seen in Figure 3a for n = 12. This can be really extended for any even $n, n \ge 4$.

Similarly, for n odd, we take n=13 as an example , as shown in Figure 3b The result follows immediately from the well known fact that C_n is of type 1 if and only if $n\equiv 0 \mod 3$.

(iii) We have to consider two cases

Case (1): $P_m ^C_{2r+1}$: This is a connected graph, see [7], which can be shown to be type 1 Figure 2a shows the colouring for m=4 and n=5. $P_4 ^C_5$

Case (2): $P_n \cap C_{2r}$: This is a disconnected graph, see [7], which can be shown to be of type 1. Figure 2b shows the colouring for m = 4 and n = 4.

Figure 34

For n = 13 $(u, v) \quad (u, v)$

≅C₂₆

Figure 36

Theorem 2 a

Proof: by induction on the number of vertices

Theorem 2 b

(i) $C_n^* k_{1,m}$ where m = 1,2, n even

(ii) $C_n \wedge K_{1,m} \quad m \neq 1,2 \text{ n odd}$

Delta J. Sci. 20 (1) 1996 E.A.El Sakhawi

Theorem 2 c

For $n,m \neq 1,2$

Proof: By induction on the number of vertices.

Theorem 3

All wheels W_n , $n \ne 3$, helms, webs and trees T_n , $n \ne 2$ are of type 1 **Proof:**

Figure 4 shows a method of colouring for wheels, helms and webs

Figure 4

For trees at n=2 then $T_2=P_2$ which is of type 2 for $n \ge 3$ we prove the assertion by induction on the number of vertices of the tree

Delta J. Sci. 20 (1) 1996 E.A.El Sakhawi

For n = 3 and n = 4 the following Figure shows that T_3 and T_4 are of type 1

Now let every tree T_k be of type $1, k \ge 5$ Then any T_{r+1} may be obtained by adding a vertex u with joining it with a vertex v in the tree T_k and we have to consider the following two cases.

Case (i) d (v) $\langle \Delta T_{k} | \text{ in the tree } T_{k}, d(v) \text{ is the degree of the verte } v \text{ in } T_{k}$

In This case, we label the added edge uv by the missing colour from those of the edges incident with v in T_k and we label the added verte u by a colour different from those of v or uv, this is available since d(v) = 1 in the tree T_{k+1} . Thus:

$$\chi''(T_{k+1}) = \chi''(T_k) = \Delta(T_k) + 1$$

= $\Delta(T_{k+1}) + 1$

and so T_{k+1} will be of type 1

Case (ii) $d(v) = \Delta (T_k)$ in the tree T_k

In this case, Δ $(T_{k+1}) = \Delta$ $(T_k) + 1$. We must label the added edge uv by Δ $(T_k) + 2 = \Delta(T_{k+1}) + 1$, and we label the added vertex u by a suitable colour as in case (i). This

$$\chi''(T_{k+1}) = \chi''(T_k) + 1$$

= $\Delta(T_k) + 2$
= $\Delta(T_{k+1}) + 1$

and so T_{k+1} will be of type 1

So in all case Tn is of type 1, $n \neq 2$

Definition:

An elementary homomorphism of a graph G is an identification of two non adjacent vertices.

Lemma 1

Every circuit with one or two emerging paths from a vertex is of type 1 **Proof**:

For a circuit C_n , with $n=0 \bmod 3$, the assertion is clear. Even for the case $n\neq 0 \bmod 3$, the assertion is also true.

Figure 5 shows the method of colouring

Figure 5

Remark:

The following graphs are of type 1:

- i- Two circuit with a common vertex.
- ii- Two sets each consisting of two multiple edges with a common vertex
- iii- A circuit of a common vertex with two multiple edges

Theorem 4

- (i) An elementry homomorphism on a path P_n induces a graph of type 2 if and only if the identification is between the end vertices of the path, and $n = 0 \mod 3$ or $n = 2 \mod 3$.
- (ii) An elementry homomorphism on a tree $\neq P_n$ establishes a graph of type 1.
- (iii) An elementry homomorphism on a circuit C_n establishes a graph of type 1.

Proof:

(i) Any identification of two vertices other than the end vertices gives rise to a circuit with one or two emerging path which is of type 1 according to Lemma (1). This identification constructs a circuit with n-1 vertices which is of type 2 if and only if n-1 = 1 or 2 mod 3 which is equivalent to n = 2 or 0 mod 3.

Example:

(ii) If the distance between the two vertices of identification is two, then we have a tree which is a graph of type 1. If the distance is greater than two, then we have a graph consisting of circuit with a tree (or more) emerging from one (or more) of its vertices, which can be proved, as in Lemma 1, to be of type 1.

$$d(v_1^-,v_1)=2$$

$$d(v_1, v_1) > 2$$

(i)
$$Id(v_1, V_3)$$

(ii)
$$Id(v_1, v_6)$$

(iii) The resulting graph is one of the three graphs of the remark above which are all of type 1.

Example:

The square of cycle:

Theorem 5

The square of a cycle C_n is of type 1: $4 \neq n \neq 7$

Proof:

For n = 4, C_n^2 is K_4 , which is type 2. For n = 7, C_n^2 is a non-conformable graph, so it is type 2 [4]. Now

(1) For $n \equiv 0 \mod 6$, Figure 6 a shows the method of colouring for n = 12.

Delta J. Sci. 20 (1) 1996 E.A.El Sakhawi

- (2) For $n = 1 \mod 6$, Figure 6b shows the method of colouring for n = 19
- (3) For $n \equiv \mod 6$, $n \equiv 5 \mod 6$, Figure 6c, 6d show the method of colouring for n = 14,11.
- (4) For $n = 3 \mod 6$, Figure 6e shows the method of colouring for n = 15.
- (5) For $n = 4 \mod 6$, Figure 6h shows the method of colouring for n = 22.

Figure 6 a

Figure 6 b

Figure 6 d

Figure 6 e

Figure 6c

Figure 6h

Uniquely Totally Colourable Graphs

Let G be a totally labelled graph, i.e. its vertices and edges are distinguished from one another by names, such as $v_1, v_2, v_3, ..., v_n$ and $e_1, e_2, ..., e_m$ respectively. Any $\chi^n(G)$ colouring of G induces a partition of the set of vertices and edges of G into $\chi^n(G)$ colour classes. If $\chi^n(G) = n$ and every colouring of G induces the same partition of the set of vertices and edges then we say that G is uniquely n - totally clourable or simply uniquely totally colourable.

Theorem 6

All paths and cycles Cn, $n = 0 \mod 3$ are uniquely totally colourable **Proof**:

It is immediate to notice that all paths are uniquely totally colourable. Now for circuits C_n , n = mod 3, we show by induction "on the number of vertices "n"that they are uniquely totally colourable. The case n = 3 is trivial.

Let the assertion be true for n and we show its validity at n + 3. For this purpose make a cut at any vertex and insert a path of length 3 at the cut as in Figure 7 a.

We consider now the case $C_n, n \neq 0 \mod 3$, i.e. $n \equiv 1 \mod 3$ or $n \equiv 2 \mod 3$. First, We treat the case $n \equiv 1 \mod 3$, where n is even.

The example C_{10} as ahown in Figure 7 b indicates two methods of colouring which are also relevant for similar situation.

For n odd, example C₇ illustrates two methods of colouring.

Figure 7 c

Second, we study the case $n \stackrel{.}{=} 2 \bmod 3$, where n is even. We take C_8 to illustrate two methods of colouring :

Now for n odd, we take C_{11} as an example to show two methods of coloruing.

Figure 7e

REFERENCES

- (1) M. Behzad, Graphs and their Chromatic Numbers, Doctoral Thesis, Michigan State University, (1965).
- (2) M. Behzad, C. Chartrand and J.K. Cooper Jr., The colour numbers of complete graphs, J. London Math. Soc. 42 (1967)., 225-228.
- (3) A.G. Chetwynd, Total colouring of graphs, Technical Report MA 88/2, Lancaster University(1988).
- (4) A.G. Chetwynd and A.J.W. Hilton, Some refinements of the total chromatic number conjecture, Nineteenth Southeasterm Conf. on Combinatorics, Congr. Number 66 (1988).
- (5) S. Piorini and R.J. Wilson, Edge-colourings of graphs, Research Notes in Math. 16, Bitman publishing, London (1977).
- (6) G.M. Hamilton, A.J.W. Hilton, Graphs of maxmium degree 3 and order at most 16 which are critical with respect to the total chromatic number, J. combin, Math. comput., 10(1991),129-149.
- (7) F. Haray Graph Theory, Addision Wesley, Reading MA (1969).
- (8) M.A. Seoud, Total chromatic numbers, Appl. Math Lett. Vol. 5, No. 6 (1992), 37-39.
- (9) V.G. Vizing, On an estimate of thechromatic class of a p. graph, Diskret. Analiz. 3(1964), 25-30.

ACKNOWLEDGEMENT

The author is grateful to prof. M.A. Seoud for helpful discussions and suggestions.

بعض الملاحظات على رقم التلوين الكلى

السيد أنور السعيد محمد السخاوى قسم الرياضيات - كلية العلوم - جامعة عين شمس

فى هذا البحث تم تعين رقم التلوين الكلى لاتصال مسارين و لاتصال مسار مسار مسار مسار مسار مسار مع دواره $C_n \wedge K_{1,m}$ مع دواره $C_n \wedge K_{1,m}$ كما تم إيجاد رقم التلوين الكلى لكل من $C_n \wedge K_{1,m}$ مع درواره $C_n \wedge K_{1,m}$ عدد زوجى، $C_n \wedge K_{1,m} \wedge K_{1,m}$ وأثبت أن رقم التلوين الكلى للعجلات $C_n \wedge K_{1,m}$ عدد زوجى، $C_n \wedge K_{1,m} \wedge K_{1,m}$ وأثبت أن رقم التلوين الكلى للعجلات $C_n \wedge K_{1,m}$ ولائشجار $C_n \wedge K_{1,m}$ وللأشجار $C_n \wedge K_{1,m}$ وللأشجار $C_n \wedge K_{1,m}$ وللأشجار $C_n \wedge K_{1,m}$

ولقد تم دراسة لتاثير الهوميومورفزم الأولى على رقم التلوين للمسارات والأشجار والدوارات . وتم تعريف مفهوم التلويين الكلى الوحيد للرسوم ومن هذا التعريف استنتج مباشرة أن كل المسارات والدوائر C_n , $n \equiv Q \mod 3$ ذات تلوين كلى وحيد.