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ABSTRACT

In this paper we are concerned with
a ditferential operator of the second¢ order
with discontainuous coefficient. The conti-
uous spectrum and the resolvent set of the
operator are investigated and the spectrum
of the adjoint operator is obtained.

INTRODUCTION

In the space cz;(o ,80) we consider the singular

operator L, generated by the differential expression

. ]
L(y) = o)

and associated with the condition y'(o)

l{_-Y”+q(X)y}, - 0 < x <e0,

i
l—

o. The function

G(x) is a cemplex valued, continuous function on [o.,®0)
00

and f X lq(x)‘ dx <eo. (I)

O

Also, the coefficient_p(x) is a discontinuous fun-
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ction at x =1 :
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p(x)
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1, 1<x<K*9 ,a#1l, Ima # o.

It should be mentioned that the spectrum of the
operator L has been studied in many works. Naimark [4]
has considered the same differential operator when
_P(x) = ] on half line with a cdndition at 6. Krall [2]
studied the operator when _p(x) =1 on [0 ,e00) with an
integral boundary condition. Petrosian [3] investigated
the operator with the condition y(o) = o. Darwish conside-
red in [{1] the case when dp(x) is a real discontinuous
function with integral boundary condition.

1. The operator L :
We denote by D(L) those functions y defined on
o ,e0) and satisfying the conditions -
i) y is in of2(o , 00 ):
ii) y' exists and is absolutely continuous on every
finite subinterval of [o , ea) :
iii) .ﬂ(y) is in ofz(o , ®O) ;

iv) y'(o) = o.
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If we define the operator L by Ly =.f(y) for all ye D(L)
then, the eigenvalue equation is of the form
Ly = Ay
2. Some solutions of the equation £(y) = Ay :

Now, consider the differential equation

-y" + q(x)y = Ap (x)y , 0 { x o0, (1)

1
Let X' =k = 0o+ i%® such that o ¢ arg k {7 . Since q(x)

satisfies condition (I), then denoting Fl(x,k) = F(x,-k),
we can use the solutions F(x,k) and Fl(x,k) of Naimark

(2. p. 297 - 299] of equation (1) as 1 < x < oo,

The properties of the solutions F(x,k), F1 (x,k)
i) Due to [5] the solutions F(x,k) and Fl(x,k) are jointly
continuous in x,k for all x > 0,%¥> o , k # o and holomo-

rphic in k for all ‘T > o. These solutions have the follow-

1ng asymptotic behaviour

F(x,k) = e X%(1 + o(1)) , F'(x.k) = e KX(

e ik + o(1)) , (2)
FL(x.k) = e X1 4 o)), Fi(x,k) = e IX ik 4 o(1),

as x-»o00 for all T> o, k # o and

F(x,k) = e M1+ 00 =) L F'(x,k) = ike (1 + 0( )
FLGd)= e X+ 002 ), FLGxk) = —ike” D¥(1 + 0( £ )
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aslk\-—-}w for all x and "t‘f;o.

Further

WIF(x,k), Fo(x,k)] = F(x,k) Fo(x,k) = F'(x,k) Fo(x,k) = -2ik

ii) In view of [1], we can write the following expressions

for the solutions F(x,k) and Fl(x,k) on the half-line :

elk[cos k(x-1)a + i sin k(x-1)aJ(1 + 0(1—1(-)),0 £x &

F(x,k) =
- Lk 1
e” x(l 0 ('-k-)) , 1 < x <e0,
and
e™[cos ka(x-1)- = sin ka(x-1)1(140(;)), o0 < x < 1
Fl(x,k) = }
~ikx 1
e (1 + O(EO), 1 < x <e0 |
for | kl—)ooand 'C_>___ O
Moreover as x- o0 and ‘Z'; 0 we have
ik, i
e [cos ka(x-1) + = sin ka(x-1)](1 + o(1)), o < x <1
F(x,k) = { )
ik
e *(1 + 0(1)) , 1 < x <00
and
-ik i,
e T [cos ka(x-1) - S sin ka(x-1)](1+ o(1)), o < x < 1
Fl(x,k)=f .
e—lkx(l + o(1)) , 1 < x <oo
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Theorem 1 :
i) If A is not an eigenvalue and W(k) # o then, the reso-

lvent operator is an integral operator

Ro (PP) = Of R(x , t, k) p(t) ¢ (r) dt

with the kernel
F(x,k)Fi(o,k)F(t,k) F(x,k)Fl(t,k)

ot y»x
R(x,t,k) = 2k W - (3)
F(x,k)F!(o,k)F(t,k) F(t,k)F, (x,k)
1 1
ey B X

2ik W(k) 21k
where W(k) = F' (o0,k).

2

ii) All numbers ﬂ# k™, _W(k) £ o, T> o belong to the reso-

lvent set of the operator.

Proof : By the assumption C > o and W(k) # o, so F(x,k)

and Fl(x,k) are linearly independent solutions of (1). It

follows from variation of parameters that the general solu-
a0

tion of £(y) - Ay = ¢ is y(x) = R) (Pe) = f R(x,t,k)

.P(t) ¢ (t)dt, where R(x,t,k) is the required rgsult and

hence, (i) is proved.

Now, taking into account [1. p. 126], it can be

deduce that the eigenvalues of the operator L are given by
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the solutions k in the upper half plane of W(k) = o. Hence

2

it follows immediatly that all numbers A=k° W(k) # o,

T > o belong to the resolvent set of the operator L. This
completes the proof.
Theorem 2 : Every point of the semi axis A > o is a point

of the spectrum.

1

Proof : Let u(t,k) = - QEE'Fi(O’k) F(t,k) then, substitut-

ing in (3) as t ¢ x we have

R(x,t,k) = _ult,k) Flxk) - 1 Fl(t,k) F(x,k).

W(k) 21k
Now, let .
CT(x,k) fOF(ek)u(e,k)dt
) Fl(x,k)____f______z_________ , x < a
E(x.k) = Syutee |
o
O , X > a
Thus,
a a a
é f(x,k)u(x,k)dx = .j Fl(x,k)u(x,k)dx ~ J u(x,k)u(x,k)dx
0 0

a

:

- a 2
Fy (e k)u(ek)de /7§ Yu(e ) ae
0
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a a 2
.I Fl(x,k)u(x,k)dx - Jf \ u(x,k) | dx
e O

a _ a 2
Oj Fo(t,k)u(t, k)dt/ OJ | uCe,k) | de

d d
§ Fi(xkulxkdx - 0 F (tkou(e,k)dt = o
O O

and

a — d a
j f(x,k)f(x,k)dx = 5 £(x,k)F, (x,k)dx - [ f(x,k)u(x,k)dx
0O O O

a _ a 2
Of F,(t,k)u(t,k)dt/ Oj | ue,k) |

Ja f(x,k)Fl(x,k)dx.

0
OO0
_—u(t,kF(x, k) E(t,k) .
f(x,k) = J u(t,K)F(GI)ECE ) gy -2--:1;? IFl(t,k)F(x,k‘
A W(k) O
f(t,k)dt
_J —Ugt kzFSX k)fgt k_). dt - —— S F (t k)F(x, k)
W(k) ~  2ik o
f(t,k)dt
a
B g —Flx,k) F,(t,k)E(t,k)dt = —F(x.k)
2ik 2ik

a
B (e 0 £(e k) de.
O
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Hence,
oo
| INEICHY 12 - JlR £(x,k) | dx > _f R, £0r,10|% dx
a
[ A RS

]

- S F(x,k) 2d. af(t,k)adt
a‘k‘zajl" | xojl |

Since F(x,k) = exp (ikx)(1 + o(1)) as x-poo(formula (2)),
there exists a suffeiciently large a such that for a < x <oo

. T>o0, k#0; |FGx, k)| > % exp (-Tx), (see [5]),
thus

f\F(x k)\:Z > -;% exp ( -2TCa).

Since in any semi circle in the upper galf plane with a

centre at the origin of coordinates .[ ‘ f(x,k)\ dx 1is

bounded away from zero, then ©
“ | —2’Ca
R ——F— , where ¢ 1s a constant.
?“ 4\k\2 8T

From here, it follows that“R?\ ”--p-aﬂ as C—»o0 and so,
the square of the point is in the spectrum of the operator

L and hence the theorem is proved.

Lemma 1 : The adjoint operator to the operator L is defined
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by the differential equation -z" + q(x)z =}ﬁ (x)z and
the condition z'(o) = o. The proof follows immediately by

using [1].

Theorem 3 : The continuous spectrum of the operator L lies

on the half semi axis } ; 0.

Proof : We have to show that the domain of the resolvent
operator i.e., the range of the operator (L — AE) is
dense in Lz(o,eo).'This is equivalent to prove that the
orthogonal complement of this range is the zero element.
But, as in [4] the orthogonal complement coincides with
the space of solutions of L Z —Jtpz From Lemma 1, it is
evident that the adjoint operator L of L can be defined
by the following differential equation - z" + q(x)z =jhpz
with the condition 2z'(o) = o. Conversely, suppose that
there is a function 2z & af (0, oo ) whlch is different from

zero and such that (Ly,z) = (y , z) Hence for A> o,

there exists a non-trivial solution of the equation
#*

L does not have positive eigenvalues (see [4]) then, there

o which belongs to cfz(o,w). Since the operator

is no non trivial solution of the required equation belongs

to 2(o,ﬁo) and the assertion follows.

*
4. The spectrum of the operator L :

f » - *
[o investigate the spectrum of the operator L we

resort to the following theorem [2]
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Theorem 4 : Let H be an arbitrary Hilbert space and L be a
3

linear operator on H with adjoint L then :

1- If A is in the residual spectrum of L,Ais in the point

3%
spectrum of L .

|

2- If ‘A is in the point spectrum ot L, is in the

Mo

point or residual spectrum of L .

3- If A is in the continuous spectrum of L , A is in the

continuous spectrum of L .

4t—- If A is in the resolvent set of L,a is in the resolvent
set of L%.

This theorem leads to the following which can be easily

proved.

%
Theorem 5 : The spectrum of L consists of :

1) eigenvalues Ei whenever W(k) = o and A = k2 is not on
the positive axis A > o.

2) continuous spectrum is on the positive half-axis A > o.

Corollary : All numbers A whenever W(k) # o and A= k2,

Im k > o belcng to the resolvent se: of the operator L .
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