S*-CONNECTEDNESS IN BITOPOLOGY

BY

U. Tapi and S.S. Thakur

Department of Mathematics - Shri G.S. Institute of Technology and Science, Indore (MP) 452003 - India.

Received: 15-5-1991

ABSTRACT

The aim of this paper is to study another type of connectedness in bitopological spaces of a stronger form.

Throughout the paper X-A denotes the complement of A in X and i, j=1,2 such that $i\neq j$.

INTRODUCTION

In a topological space X, a set A is semiopen if for some ope set 0, 0 = A = clo where clo denotes the closure of 0 in X [3]. Complement of a semiopen set is semiclosed. The intersection of all the semiclosed sets containing a set A is called the semiclosure of A and denote it by scl A [1].

The theory of bitopological spaces was first developed by Kelly in 1963 [2]. A bitopological space (X,T_1,T_2) is a non empty set X equipped with two topologies T_1 and T_2 . A subset A of a bitopological space (X,T_1,T_2) is turned (i,j) semiopen if there exists a T_i open set 0 such that 0-ACT_j -clo, where T_j -clo denotes the closure of 0 with respect to the topology T_j . Each T_i -open set is (i,j)-semiopen but the converse may be false [2]. Any union of (i,j)- semi open sets is (i,j)- semiopen. Complement of an (i,j)- semiopen set is (i,j) semiclosed [2]

Delta J. Sci. 16 (2) 1992 S*-CONNECTEDNESS

The intersection of all the (i,j) semiclosed sets containing a set A is turned the (i,j) semiclosure of A. Denote it by (i,j) -scl A. It is the smallest (i,j) - semiclosed set containing A, Further, A c(i,j) Scl A Ti-clA, A c(i,j) B implies (i,j)-scl A c(i,j)-scl B, (i,j)-scl ((i,j)-scl A) = (i,j)-scl A. Moreover A is (i,j)- semiclosed iff A= (i,j) -scl A and p c(i,j)-scl A iff each (i,j) -semiopen set containing p meets A. The study of connectedness in bitopological spaces has been initiated by Pervin [3].

<u>DEFINITION 1 [2]</u>: A function f: $(X, T_1, T_2) \longrightarrow (X^*, T_1^*, T_2^*)$ is said to be pairwise semi continuous if the inverse image of every T_1^* - open set is (i,j) - semiopen in X.

<u>DEFINITION 2 [5]</u>: A function f: $(X,T_1,T_2) \longrightarrow (X^*,T_1^*,T_2^*)$ is said to be pairwise irresolute if the inverse image of every (i,j) -semiopen in X^* is -(i,j) semi open in X.

<u>LEMMA 1 [2]</u>: If V is (i,j) semi open and 0 is biopen in a bitopological space (X, T_1 , T_2), then V \cap 0 is (i,j) - semiopen.

<u>LEMMA 2 [4]</u>: If (Y, T_1^*, T_2^*) be a biopen subspace of a bitopological space (X, T_1, T_2) and BCY, then $(j,i)^*$ -scl (B)=(j,i)-scl (B,i) where $(j,i)^*$ -scl (B) means the (j,i) semiclosure of B with respect to Y.

<u>LEMMA 3 [2]</u>: Let (Y, P_1, P_2) be a subspace of a bitopological space (X, T_1, T_2) . If A is (i,j) semiopen in Y and Y is T_i -open in X then A is (i,j) semiopen in X.

<u>LEMMA 4 [2]</u>: If A is (i,j) semiopen and B is biopen in a bito-pological space (X, T_1, T_2) then AAE is (i,j) semiopen in B.

Delta J. Sci. 16 (2) 1992 U.Tapi & S.S.Thakur

2. <i,j> *-SEMI SEPAPATED SETS

<u>DEFINITION 3 [6]</u>: Two sets A,B in a bitopological space (X,T_1,T_2) are said to be $\langle i,j \rangle$ *-semi separated if A $\Lambda(i.j)$ -scl (B)= \emptyset = (j,i)-scl (A) Λ B.

REMARK 1: Any two <i,j) *-semiseparated sets are necessarily disjoint. However, the converse may be false, Consider:

EXAMPLE 1: Let $X = \{a,b,c,d\}$, $T_1 = \{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}\}$, $X \}$, $T_2 = \{\emptyset, \{a\}, \{a,b,c\}, X\}$. Then the sets $\{a,b\}$ and $\{c,d\}$ are disjoint but not $\langle i,j \rangle$ *-semi separated.

3. S* - CONNECTED BITOPOLOGICAL SPACES

<u>DEFINITION 4 [6]</u>: A bitopological space (X, T_1, T_2) is s*-connected if it is not the union of two nonempty $\langle i, j \rangle$ *-semi separated sets.

THEOREM 1: Let a function f: $(X, T_1, T_2) \longrightarrow (X^*, T_1^*, T_2^*)$ be on-to and pairwise semicontinuous. If X s*-connected then X^* connected.

THEOREM 2: Let a function f: $(X,T_1,T_2) \longrightarrow (X^*,T_1^*,T_2^*)$ be onto and pairwise irresolute. If X is s*-connected then X* is s*-connected.

The proofs are straight forward.

<u>LEMMA 5</u>: Let $f: (X,T_1, T_2) \longrightarrow (X^*, T_1^*, T_2^*)$ be one-one, pairwise open and pairwise continuous. If B is (i,j)-semiopen in X* then f^{-1} (B) is (i,j)-semiopen in X.

PROOF: Since B is (i,j)-semiopen in X* there is a T_1^* -open set 0 such that $0 \subset B \subset T_j^*$ -cl (o). Therefore, $f^{-1}(0) \subset f^{-1}(B) \subset f^{-1}(T_j^*$ -cl(0)). Since f is pairwise continuous, $f^{-1}(0)$ is T_i -open. Let $x \in f^{-1}(T_j^*$ -cl(0)) and U be a T_j -open set containing x

Delta J. Sci. 16 (2) 1992 S* CONNECTEDNESS

Then, $f(x) \in f(U)$. Now f(U) is T_j^* -open for f is pairwise open. Since $f(x) \in T_j^*$ -cl(0), it follows that $f^{-1}(U) \cap 0 \neq \emptyset$. Now f being one one this implies that $U \cap f^{-1}(0) \neq \emptyset$. And so, $x \in T_j$ -cl $(f^{-1}(0))$. That, $f^{-1}(0) \subset f^{-1}(B) \subset f^{-1}(T_j^*$ -cl(0)) $= T_j$ -cl $(f^{-1}(0))$. Hence, $f^{-1}(B)$ is (i,j)-semiopen in X.

<u>THEOREM 3</u>: If f: $(X,T_1,T_2) \longrightarrow (X^*,T_1^*,T_2^*)$ be a pairwise homeomorphism and X is s*-connected then X* is s*-connected. The proof of the theorem is obtained by using Lemma 5.

<u>DEFINITION 5</u>: A bitopological space (X, T_1 , T_2) is locally s*-connected if for every point $x \in X$ and every T_i -open set 0 containing x there exists a biopen s*-connected set G such that $x \in G \subset O$.

REMARK 2: A locally s*-connected space need not be s*-connected. Consider $X = \{a,b\}$ and $T_1 = T_2 = \{\emptyset, \{a\}, \{b\}, X\}$.

<u>REMARK 3</u>: A space may be s* -connected without being locally s*-connected. Consider: $X = \{a,b\}$, $T_1 = \{\emptyset, \{a\}, \{b\}, X\}$ and $T_2 = \{\emptyset, X\}$.

THEOREM 4: Every biopen subspace (F,T_1^*,T_2^*) of a locally s*-connected space (x,T_1,T_2) is locally s*-connected.

<u>DEFINITION 6</u>: Let X be a locally s*-connected space and $p \in X$, the s*-component of p is the union of all the biopen s*-connected sets containing the point p.

THEOREM 5: Each s*-component is biopen and s*-connected.

THEOREM 6; Each s*-component of a biopen set of a locally s*-connected space is biopen.

This follows from theorem 4 and 5.

Delta J. Sci. 16 (2) 1992 U. Tapi and S.S. Thakur

THEOREM 7; Two distinct s*-components are <i,j> *-semiseparated.

COROLLARY 1: The family of all the s*-components, of a locally-s*-connected space X, is a partition of X.

The proofs are straight forward.

 $\underline{\text{THEOREM 8}}$: Each s*-components is biclosed. This follows from theorem 5 and Corollary 1.

Delta J. Sci. 16 (2) 1992

REFERENCES

- 1- Kuratowski, K.(1961): Introduction to set-theory and topology, New Work, Pergamon.
- 2- Maheshwari, S.N. and R.Prasad (1977/78): Semi-open sets and semi-continuous functions in bitopological spaces.

 Maths. Notae, XXVI, 29-37.
- 3- Pervin, W.J. (1967): Connectedness in bitopological spaces.

 Indag. Math, 29, 369-372.
- 4-Prasad,R. (1976): The role of semi open sets in topology. Ph.D.

 Dissertation. University of Sagar, Sagar (MP). India.
- 5- Maheshwari, S.N. and R. Prasad(1976): On pairwise irresolte functions, mathematics, 18 (41), 2, 169-172.
- 6- Mukherjee, M.N. (1983): Pairwise-semi connectedness in bitopological spaces. Indian J. pure.appl.Math. 14(9), 0.1166-1173.

الترايط في ثنائي التوبولوجيي

الهدوف من البحدث هدو براسة نوع اخدر من انواع الترابط نات الشكل الاقدوى في الفراغات ثنائية التوبول وجدى خلال البحدث سنكتب A لنعنى بذلك مكم المجموعة A فدى الفراغ X كما ان المجموعة أبرة حيث الفراغ X كما ان المجموعة أبرة حيث الفراغ X كما ان المجموعة المجموعة