D-EQUIVALL TOPOLOGIES

BY

A.M. Kozae; A.A. Abo Khadra * 1 1 1

Department of Mathematics, Faculty of Science,
Tanta University, Tanta, Egypt.

Received: 14-1-1992

ABSTRACT

In this paper we define two topologies **Z** and **U**on a set X to be D-equivalent iff the class of nowhere dense subsets of X with respect to **T** is precisely the class of nowhere dense with respect to **U**. Equivalence in the sense of Levine [7] and D-equivalence are concaded for topologies with the same classes of semi-open sets. Some characterizations and properties of D-equivalent topologies are obtained. We investigate the D-equivalence of a topology **Z** and some of its contractions (expansions). Also D-equivalent topologies which have the same **X**-sets and the same regular open sets are investigates.

1- INTRODUCTION

Throughout the present paper $\mathbf{7}$ and $\mathbf{1}$ are two topologies on a set \mathbf{X} on which no separation axioms are assumed unless explicitly stated. $\mathrm{cl}_{\mathbf{C}}$ (resp. $\mathrm{int}_{\mathbf{C}}$) and $\mathrm{cl}_{\mathbf{U}}$ (resp. $\mathrm{int}_{\mathbf{U}}$) denote closure (resp. interior) operators with respect to $\mathbf{7}$ and $\mathbf{1}$. In [13], [10], [9], \mathbf{x} -open, preopen and semiopen sets were introduced respectively. \mathbf{x} 0(\mathbf{X} , $\mathbf{7}$) (resp. $\mathrm{PO}(\mathbf{X},\mathbf{7})$, $\mathrm{So}(\mathbf{X},\mathbf{7})$) is the coresponding classes of these types of sets. The complements of the last sets are \mathbf{x} -closed, preclosed (denoted by $\mathrm{PC}(\mathbf{X},\mathbf{Z})$) and semiclosed, respectively. The class of \mathbf{x} -open forms a Key Words and Phrases. nowhere dense, dense, \mathbf{x} -open, and semiopen sets, semi- \mathbf{T}_2 , CO-RS-compact, filter extension.

topology denoted by 7 [13]. The class of all regular open sets (denoted by RO(X, Z)) is a base for a topology ζ_s called the semiregularization of $\tau[15]$. If τ' is a topology on X, and RO(X, T) = RO(X, T'), then T' is ro-equivalent to T[5]. A topology Ton X is a D-topology [8] if every non-empty open set is dense in X. A space X is called ≪-compact [11] if every \mathbf{X} -open cover of \mathbf{X} has a finite subcover. \mathbf{X} is semi- \mathbf{T}_2^t [1] if for each x,y X, x \neq y, there exist U and V SO(X, \overline{z}) such that $x \in U$, $y \in V$, and $cl(U) \cap cl(V) = \Phi$. A subset S of X is called an RS-compact relative to X [14] if for every cover $\{V_i: i \in I\}$ of S by regular closed sets of X, there exists a finite subset I_0 of I such that $Sc U[int(V_i): i \in I_0]$. If R' $(7) = \{U \in 7 : X - U \text{ is RS-compact relative to } 7\}$, then R'(7) is a base for a topology R(7) on X, called the CO-RS-compact topology on X [2]. (X, T) is resolvable [6], if there is a subset D of X such that D and X-D are both dense in X. A space X is irresolvable if it is not resolvable. If \mathfrak{F} is a filter on X, then the topology $\mathcal{T}(\mathfrak{F}) = \{ \text{UNF} \colon \text{U} \in \mathcal{T}, \text{F} \in \mathcal{F} \}$ is called a filter extension of $\tau[3]$. In [7] the concept of equivalence in the sense of Levine have been introduced as follows "Let τ and u be two topologies on a set x, we say that 7 and 22 are equivalent iff (X,7) and (X,2) have identical dense sets." One easily can deduce that the complement of a nowhere dense subset (denoted by mwd) is dense, and the converse is not true, in general as shown by the following example.

Example 1.1. Let $X = \{a,b,c\}$, and $Z = \{\emptyset,X,\{a\},\{b,c\}\}$, then we notice that $\{a,b\}$ and $\{a,c\}$ are dense sets but their complements are not nowhere dense sets.

Delta J. Gci. 16 (1) 1992 Kozac and Abo Khadra

Lemma 1.1. (a) If A is dense and open subset of a space X, then (X-A) is nowhere dense

- (b) If AC BCX, and A is dense, then B is dense.
- (c) If AcBcX, and B is nowhere dense, then A is also nowhere dense.

Proof. Obvious.

2. D-EQUIVALENT TOPOLOGIES

Definition 2.1 Let \mathcal{T} and \mathcal{U} be two topologies on a set X, we say that \mathcal{T} and \mathcal{U} are D-equivalent iff (X,\mathcal{T}) and (X,\mathcal{U}) have identical nowhere dense sets.

Remark 2.1: The class of equivalent topologies in the sense of Levine are proper subclass of the class of D-equivalent topologies. The following example ensures that they are not identical.

Example 2.1. Let $X = \{a,b,c,d\}$ and $T = \{X,\emptyset, \{a\}, \{b\}\}, \{a,b\}, \{b,c,d\}\}$, and $T = \{X,\emptyset, \{a,b\}, \{a,b,d\}, \{a,b,c\}\}\}$. We notice that Z and T are D-equivalent but not equivalent in the sense of Levine.

In the following we give characterizations and properties of D-equivalent topologies.

Theorem. 2.1. If $\boldsymbol{\zeta}$ and $\boldsymbol{\mathcal{U}}$ are two topologies on X. Then the following are equivalent:

- i) Tand 1 are D-equivalent topologics.
- ii) For each ACCAU, intuct AC cluA, and int cluAC cl A. iii) For each ACCAU, A is dense in 7 iff A is dense in U.

Proof. (i) \Rightarrow (ii) We assume that int cluA \Leftrightarrow cluA, then \spadesuit int cluA \cap (X - cluA) = int (cluA \cap (X-A)) = int cluA \cap (X-A). Hence (cluA \cap (X-A)) is not nowhere dense in \nearrow , and \spadesuit int clu(CluA \cap (X-A)) = int (cluA \cap clu(X-A)) = int cluA \cap int clu(X-A) = CluA \cap (X-cluA) = \spadesuit . This is a contradiction.

(ii) \Rightarrow (iii) Let A \in Z \cap U, A is dense in \cap , then int cluster \cap X \cap cluster A is dense in U.

(iii) \Rightarrow (i) Let A be a nowhere dense in \mathbb{Z} , then (X-cl_A) is dense and open in \mathbb{Z} . Hence (X - cl_A) is dense and open in \mathbb{Z} . Thus cl_A is nowhere dense in \mathbb{Z} , and A is nowhere dense in \mathbb{Z} .

Corollary 2.2. If $\mathbf{7}$ and \mathbf{U} are D-equivalent then, intucl \mathbf{A} \mathbf{C} $\mathbf{Cl}_{\mathbf{U}}^{\mathbf{A}}$ (resp. int $\mathbf{Cl}_{\mathbf{U}}^{\mathbf{A}} \mathbf{C}$ $\mathbf{Cl}_{\mathbf{U}}^{\mathbf{A}}$), for each $\mathbf{A} \in \mathbf{T}$ (resp. $\mathbf{A} \in \mathbf{U}$)

COROLLARY 2.3. \mathbf{T} and \mathbf{U} are D-equivalent topologies on X iff for each $\mathbf{A} \subseteq X$, int $\mathbf{Cl}_{\mathbf{U}}^{\mathbf{A}} \neq \mathbf{\Phi}$ iff intuclu $\mathbf{A} \neq \mathbf{\Phi}$.

THEOREM 2.4. If \(\tag{T}\) and \(\tag{U}\) are D-equivalent topologies on \(X\), then each proper \(\tag{T}\) -preclosed (resp. \(\tag{U}\)-preclosed) subset contains a proper \(\tag{U}\)-open (resp. \(\tag{T}\)-open) subset.

Proof. Let $\phi \neq U \in PC(X, \mathbb{Z})$, then (X-U) is preopen in (X, \mathbb{Z}) , and hence is not nowhere dense in (X, \mathbb{Z}) . Thus it is not nowhere dense in (X, \mathbb{U}) , and $\phi \neq \operatorname{int}_{u}\operatorname{cl}_{u}(X-U) \subset \operatorname{cl}_{u}(X-U) = X - \operatorname{int}_{u}U$. Hence $\operatorname{int}_{u}U \neq \phi$, and $\phi \neq \operatorname{int}_{u}U \subset U$.

Delete Sci. 16 (1) 1992 Kozue and Abo Khadra

Lemma 2.5. Topologies which have the same $oldsymbol{lpha}$ -open sets are D-equivalent.

Proof. By Proposition (5) in [13], the proof is obvious.

Lemma 2.6 If X is a space with two topologies $\mathbf{7}$, $\mathbf{7}'$ such that $\mathbf{7}$. Then $\mathbf{7}$, $\mathbf{7}'$ and $\mathbf{7}''$ are D-equivalent.

Proof. By Proposition (10) in [13] and Lemma (2.5), the proof is obvious.

Lemma 2.7 If (X, \mathbf{Z}) is a space, and $(X, R(\mathbf{Z}))$ is a semi- T_2' . such that int $G = \operatorname{int}_{R(\mathbf{Z})} G$ for each $G \in \mathcal{T}'$. Then $R(\mathbf{Z})$ and \mathbf{Z} are D-equivalent.

Proof. By Lemma (3.4) in [2], and Lemma (2.5), the proof is obvious

Theorem 2.8 . If $\mbox{Tc-}\zeta'$ such that \mbox{T} , are D-equivalent, and \mbox{T}' is $\mbox{$\alpha$}$ -compact space. Then

(a) Tac Time (b) T, Tare x-compact.

Proof. (a) Let $A \in \mathcal{T}^{\bullet}$, then A = U - N [13] where $U \in \mathcal{T}$, and N is nowhere dense in \mathcal{T} . But $\mathcal{T} \subset \mathcal{T}^{\bullet}$, and \mathcal{T} , \mathcal{T}^{\bullet} are D-equivalent, then $U \in \mathcal{T}^{\bullet}$, and N is nowhere dense in \mathcal{T}^{\bullet} .

(b) By (a), the proof is obvious.

Theorem 2.9. A topology olimits on X is a D-topology iff the complement of any open set is nowhere dense in X.

Proof. Let $\Phi \neq A \in \mathcal{T}$, then int $\operatorname{cl}_{\mathcal{T}}(X-A) = \Phi$, and $\operatorname{cl}_{\mathcal{T}}A = X$. Thus (X,\mathcal{T}) is a D-topology. Conversely we assume that (X,\mathcal{T}) is a D-topology, and $\Phi \neq A \in \mathcal{T}$, then $\operatorname{cl}_{\mathcal{T}}A = X$. Hence int $\operatorname{cl}_{\mathcal{T}}(X-A) = \Phi$.

Corollary 2.10 A topology $\boldsymbol{\tau}$ on X is a D-topology iff every non empty closed set is nowhere dense in X.

3. SUBSPACES AND SOME OTHER PROPERTIES

Lemma 3.1. If A is a subspace of (X, \mathbb{Z}) , and S is nowhere dense in A, then S is nowhere dense in X.

Proof. Let S be not nowhere dense in \mathbb{Z} , then int $\operatorname{cl}_{X} S \neq \emptyset$ and hence there exists $\mathbb{Q} = \operatorname{cl}_{A} S$, and $\mathbb{Q} = \operatorname{cl}_{A} S$. Thus $\mathbb{Q} = \operatorname{cl}_{A} S$, and $\mathbb{Q} = \operatorname{cl}_{A} S$, and $\mathbb{Q} = \operatorname{cl}_{A} S$. This is a contradiction.

Lemma 3.2. If YET, and A is nowhere dense in (X, T), then A is nowhere dense in (Y, T_Y) .

Proof. Let $U \in \mathbb{Z}_Y$, then $U = Y \cap 0$, $0 \in \mathbb{Z}$. But $Y \cap 0 \in \mathbb{Z}$. then there exists $0 \in \mathbb{Z}$ such that $0 \subseteq Y \cap 0$, and $A \cap 0' = \emptyset$. But $Y \cap 0' \in \mathbb{Z}_Y$. Hence $A \cap (Y \cap 0') = \emptyset$, and A is nowhere dense in (Y, \mathbb{Z}_Y) .

Theorem 3.3. If Y is an open subspace of (X, τ). Then τ is D-equivalent with $\tau_{\rm v}$.

Delta j. Sci. 16 (1) 1992

Kozae and Abo Khadra

Proof. By using Lemmas (3.1), (3.2).

Theorem 3.4 [4] A subset A is nowhere dense in (X, \mathbb{T}) , i iff for each WeT, there exists UC W, UET such that U $\bigcap A = \Phi$.

Remark. 3.1. It is easy to prove that Theorem (3.4) still valid on replacing the word open by semi-open.

For space (X, \mathcal{T}) we give the following properties for the class. $S(\mathcal{T}) = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}' : \mathcal{T}' \text{ is a topology on } X \text{ with } SO(X, \mathcal{T}') = \{ \mathcal{T}' : \mathcal{T}'$

Theorem 3.5. If (X, T) is a space, then T and all members of S(T) are D-equivalent.

Proof. By Remark (3.1), the proof is obvious.

Theorem 3.6 [4] A subset A of a space (X, τ) is dense iff A \cap U $\neq \Phi$ for each U $\in \tau$ - $\{\Phi\}$.

Remark 3.2. It is easy to prove that Theorem (3.6) still valid on replacing the word open by semi-open.

Theorem 3.7. If (X, \mathcal{T}) is a space, then \mathcal{T} and all members of $S(\mathcal{T})$ are equivalent in the sense of Levine.

Proof. By Remark (3.2), the Proof is obvious.

Theorem 3.8. If (X, \mathcal{T}) is a space, then and all members of $S(\mathcal{T})$ are D-equivalent iff they are equivalent in the sense of Levine.

Proof. By Theorems (3.5) and (3.7), the proof is obvious Theorem 3.9. [3] If (X, \mathcal{T}) is an irresolvable space $\mathcal{T}(\mathcal{F})$ is a filter extension of \mathcal{T} by a filter \mathcal{F} on \mathcal{X} and $\mathcal{F} \in SO(X, \mathcal{T})$, for every $\mathcal{F} \in \mathcal{F}$, then $SO(X, \mathcal{T}) = SO(X, \mathcal{T}(\mathcal{F}))$.

Theorem 3.10. If (X, \mathcal{T}) is an irresolvable space, $\mathcal{T}(\mathfrak{F})$ is a filter extension of \mathcal{T} by a filter \mathcal{F} on X and $F \in SO(X, \mathcal{T})$, for every $F \in \mathcal{F}$, then \mathcal{T} and $\mathcal{T}(\mathfrak{F})$ are D-equivalent.

Proof. By Theorem (3.9), and Remark (3.1), the proof is obvious.

Lemma 3.11. If <code>Tct</code> are two topologies on X such that they are ro-equivalent. Then the class of all nowhere dense of is contained in the class of all nowhere dense of <code>7</code>.

Proof. Let A be a nowhere dense in ζ . Then φ = int_cl_A= int_, cl_A int_, cl_A.

The condition that ro-equivalent is necessary as the following example showing.

Example 3.1 Let $X = \{a,b,c\}$, $T = \{\phi,X,\{a\}\}$ and $T' = \{\phi,X,\{a\}\}$, $\{b,c\}\}$, Then RO $(X,T) = \{\phi,X\} \neq \{\phi,X\}$

Remark 3.3 Since ζ_s and ζ_s are ro-equivalent [5], then the class of all nowhere dense of ζ_s is contained in the class of

Delta J. Sci. 16 (1) 1992 Kozae and Abo Khadra

all nowhere dense of \mathcal{T} and thus \mathcal{T}_s .

Theorem 3.12. If (X, \mathcal{T}) is a space such that int $A = \text{int} \mathcal{A}$ for each $A \in \mathcal{C}$. Then \mathcal{T}_S , \mathcal{T}_S , and \mathcal{T}_S are D-equivalent.

Proof. By [13], we have ζ and ζ are D-equivalent. By Remark 3.3, If A is a nowhere dense in ζ , then A is nowhere dense in ζ

We want to prove that C C let $A \in C$, then $A \subset I$ int C C C C in

REFERENCES

- 1- Abd El-Monsef, M.E.: Studies on some pretopological concepts, Ph.D. Thesis, Tanta Univ. (1980).
- 2- Abd El-Monsef, M.E.; Kozae, A.M.: Abo Khadra, A.A.: CO-RS-Compact topologies, co appear in Tamb J. of Wath V2 1992
- 3- Abd El-Monsef, M.E.; Lashin, E.F.: Filter extension of topologies. Proc. 3rdConf. Math. Stat. o.r. and Appl. Bull. Fac. Alex. Univ. (1988).
- 4- Bourbaki N.: Elements of mathematics. General. Topology
 Part I (Herman, Paris; Addison-Wesley, Reading,
 Mass., 1966).
- 5- Cameron, D.e.: A class of maximal topologies, Fac. J. Of Math. 70 (1977), 101-104.
- 6- Hewitt, E.: A problem of set theoretic topology. Duke.
 Math. J. 10 (1943), 309-333.
- 7- Levine, N.: On topologies with identical dense sets, kyungpook Math. J.V. 18, N.1, June 1975.
- 8- Levine, N.: Dense topologies, Amer. Math. Monthly, Vol. 75, NO. 8, October 1968.
- 9- Levine, N.: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41.
- 10- Mashhour, A.S.; Abd El-Monsef, M.E.; El-Deeb, S.N.: On precontinuous and weak precontinuous mappings Proc. Math. Phys. Soc. Egypt 953) (1982), 47-53.
- 11- Mashhour, A.A.; Hasanien, I.A.; El-Deeb,S.N.: Yecontinuous and Y- open mappings, Acta Math. Acad, Sci. Hunger, Vol. (41) (3+4) (1983), (13-215.

Belta J. Sci. 16 (1) 1992 Hozae and Khadra

- 12- Miodurzewski, J; Rudolf,L.: H-closed and extremely disconnected Hausdorff spaces, Dissertations Math., 66(1969).
- 13- Njasted, O.: On some clases of nearly open sets, Fac.J.of Math. 15 (1965), 961-970.
- 14- Noiri, T.: On RS-compact spaces, J.Korean Math. Soc. 22 (1985), NO. 1,PP. 19-34.
- 15- Stone, M.H.: Applications to the theory of Boolian rings in general topology, Trans. Amer. Math. Soc., 41, 375-481.

Delta J. Sci. 16(1) 1992

فى هذا البحث عرفنا ان البناء بين التوبولوجيين ح ، ال على لا يكونان متكافئين من النوع (أ انا كان لهما نفس العائلة من المجموعات غير الكثيفة مطلقا (nwd) اثبتنا ان التكافؤ فى مفهوم ليفين (Levine) يتطابق مع التكافؤ من النوع (أ انا كان للفراغين نفس العائلة من المجموعات شبه المفتوحة (semi-open) ايضا درسنا بعض الخواص والصفات للفراغات المتكافئة من النوع (أ . كذلك درسنا التكافؤ من النوع (أ ببن التوبولوجي الاصلى ح وبعض من انكماشاته وتمدناته وايضا للتوبولوجيات التي لها نفس المجموعات من النوع به ، المجموعات من التوبولوجيات التي لها نفس المجموعات من النوع به ، المجموعات من التوبولوجيات التي لها نفس المجموعات من النوع به ، المجموعات من التوبولوجيات التي لها نفس المجموعات من النوع به ، المجموعات