

جامعه طنط – كليه العلوم امذان الفصل الدراسي الأول اطادة: مقدمه في الإحصاء قسم الرياضيات المسلوى: الثاني [ساعات معنمه] الزمن: ساعنان رقم المقرر: ST2105 الشعبة: كيمياء حيوي النارية: ١١/١/١٤٠٦

Answer the Following Questions:

1- Calculate the mean, the median and the mode for the following Senna leaves lengths which shown in the following table:

Lengths(mm)	118-126	127-135	136-144	145-153	154-162	163-171	172-180
Frequency	3	5	9	12	5	4	2

2- For the following data:

1 3
E .
3
_

(i) Find the regression line Y on X

(ii) Estimate the value of Y if X = 7

(ii) Calculate Pearson's correlation coefficient (r).

3- If the probability distribution of the discrete random variable X is defined by:

x	To a second	3	4	5
p(x)	4k	k	0.2	3k

Find: (i) k

(ii) E(2X + 1)

(iii) σ^2

4- If X is a random variable following a normal distribution such that $X \sim N(50,25)$, Calculate the following probabilities:

$$(i)P(40 < X < 60)$$
 $(ii)P(X > 60)$ $(iii)P(X < 45)$ $(iv)P(55 < X < 65)$

Given:
$$A(1) = 0.34134$$
, $A(2) = 0.47725$, $A(3) = 0.49865$

With All My Best Wishes Dr. Wafaa Anwar

14 - The dor a - phy	minant pigment	in cyanobacteria is b - Chl. a	c - phycocyanin	d - all
15 - During	log phase			1
a)		olication and death be		
b)			size of cell and metaboli	c rate
c)		the cells decrease		
d)	The cells star	t dividing and their n	umber increase by geome	etric progression
II - Comple	te the sentences	·		(20 Manks)
			n into a	(<u>30 Marks</u>)
			8	
			, a	
4 - Cyanobac	cteria reproduce	by	···· a	nd
5 - Habitats	of cyanobacteria	are	8	ınd
6 - Prokaryo	tic cells characte	erize by absent of	,	,
7- In DNA s	trand thiamin lir	nked with through	while	cytosine linked with
8 - The thal	lus bodies of cya	anobacteria distinguis	sh to and	
9 - The mod	les of nutrition i	n bacteria are	· · · · · · · · · · · · · · · · · · ·	and
10 - During	photosynthetic p	process, the hydrogen	donor in cyanobacteria i	.s
and evo	olved	while in Bac	teria is And	l evolved
11 - The brea	k in the trichom	e from where pseudo	branches are formed ma	y be brought about by
	.01		te it in correct form:-	(30 Marks)
1 - The protein	in coat of viruse	s contains DNA and	RNA.	
2 - Bacterial 1	metabolic reaction	ons occur in cell wall	•	
3 - The thallu	s body of Nosto	c is false branching.		
5 - The positi	on of heterocyst	is intercalary in Spir	ulina.	
6 - Bacteria c	an multiply by n	nitotic division.		
7 - Direct mic	croscopic counts	can be used to distin	guish between dead and	living bacteria.
		yanobacteria is paras		
9 - During stationary phase, the cells start dividing and their number increase by geometric				

pro	gre	essi	on.

- 10 The cell wall of cyanobacteria consists of cellulose and pectin.
- 11 Viruses can grow on synthetic media.
- 12 Heterocyst stimulates the production of akinetes.
- 13 Bacteria multiply by a sexual reproduction.
- 14 Intercalary heterocyst includes one nodule polar.
- 15 Some members of cyanobacteria and bacteria can fix atmospheric nitrogen.

VI - Write short notes on of the following:-

(45 Marks)

- a The differences between prokaryotic and eukaryotic cells (with drawing)
- b Standard growth curve of bacteria (with drawing)
- c The difference between batch and continuous cultures.
- V With labeled diagram, discuss the mechanism of virus infection

(15 Marks)

With best wishes,,,,,,

Examiners:

Prof. Dr. Atef Mohamed Abo-Shady

Tanta UNIVERSITY, Faculty of Science, Department of Botany

EXAMINATION FOR (SOPHOMORES) SECOND YEAR STUDENTS OF CHEM / MICRO

COURSETITLE:	PROKARYOTIC ORGANISMS		COURSE CODE: MB2101
SEPT., 2016	TERM: FIRST	TOTAL ASSESSMENT MARKS: 150	TIME ALLOWED: 2HOURS

Answer the following questions:-

I - Choose the correct answer o	f the following: -		(30 Marks)
1 - The main pigment which resp a) chlorophyll a b) ph	onses for the photo	synthetic process in cyanoba c) phycoerythrin	d) nothing
2 - The precipitated viruses which a - living organism b -	h retain its infectivit - virion	ty called	d - all
3 - The false branching present in a - Oscillatoria b	n thallus of - <i>Tolypothrix</i>	c - Stigonema	d - Nostoc
4 - One virion absorbs with a - three b -	red four		clump together. d - five
5 - Mode of nutrition of bacteria a - autotrophic b		c - parasitic	d-all
6 - The hormogonia formed in a - Spirulina b - Scyto			d - Rivularia
7 - The number of generations per a) Generation time b) Lo	er hour in a bacteria	a isigmoid curve d) Genera	ation rate
8 - Which method of measuring microorganisms	S		counts
9 - Which of the following is fala) They consist of bacteriac) They have no cell nucle	and archaea	b) Most a division occurs by mitosis an	re unicellular
10- An experiment began with 4 cells go through?		ith 128 cells. How many gen	
a) 5) 4	c) 3	d) 6
11 - The kingdom which include a - plantae b	es cynobacteria is . - anamilia	c - protista	d - monera
12 - The reproduction in bacteri a - binary fission	a takes place by b - akinetes	c - hormogonia	d - all
13 - Storage food in cyanobacte a - starch		c - cyanophycean	d - all

TANTA UNIVERSITY FACULTY OF SCIENCE CHEMISTRY DEPARTMENT FINAL EXAM FOR SOPHOMORES (DOUBLE MAJORS) COURSE TITLE: CHEMICAL THERMODYNAMICS (CH2141) DATE: JAN 09, 2016 TERM: FIRST TOTAL ASSESSMENT MARKS: 100 2 HOURS

Question 1:

A) Prove that $(\delta G/\delta T)_V = -S$

(6 Marks)

B) Define:

(6 Marks)

i) Heat of combustion

ii) Lavoisier and Laplace's law

iii) Joule-Thomson coefficient for ideal gases and real gases

C) Give reasons:

(8 Marks)

- 1) Free energy is an extensive property of the system
- 2) The reaction spontaneity cannot be determined by ΔH
- 3) $\triangle E$ is considered to define the internal energy instead of E.
- 4) A simple cup of tea cannot be considered as an example of isolated system.

Question 2:

- A) Derive the relationship between temperature and volume for an adiabatic expansion process of one mole of an ideal gas. (10 Marks)
- B) Consider 2 moles of an ideal gas undergoing a reversible isothermal expansion at 25 °C from 1.00 atm and 49.6 L to 75.0 L. Determine q, w, \triangle E, \triangle H, \triangle S and \triangle G for this process. (10 Marks)

Question 3:

A) Use the following thermochemical equation:

(10 Marks)

1/2 Cl₂ (g) + O₂ (g) \rightarrow ClO₂ (g) \triangle_r H° = 102.5 kJ 1/2 Cl₂ (g) + 3/2 O₂ (g) \rightarrow ClO₃ (g) \triangle_r H° = 155 kJ Cl₂ (g) + 7/2 O₂ (g) \rightarrow Cl₂ O₇ (g) \triangle_r H° = 272 kJ

To determine Δ_r H° for 3 ClO₃ (g) \rightarrow Cl₂ O₇ (g) + ClO₂ (g)

B) A Carnot engine operates between two thermal reservoirs at 100 °C and 0 °C. What amount of work can it produce for each 1000 J of heat absorbed from the warm reservoir? Calculate the efficiency of the engine. (10 Marks)

C) Prove that $\Delta S_{system} + \Delta S_{surroundings} > 0$ for irreversible processes.

(10 Marks)

Question 4:

A) Calculate the final pressure of an ideal diatomic gas that undergoes a reversible adiabatic compression from 1bar, 298K, and 25L to 1L. Determine the final temperature ($C_V = 5R/2$). (10 Marks)

B) Prove that $C_p - C_v = R$

(10 Marks)

C) For the following reaction,

(10 Marks)

 $CCl_2BrH(L) + H_2(g) \leftrightarrow CClBrH_2(L) + HCl(g)$

 $\Delta G^{\circ} = -103.72 \text{ kJ at 35 °C}$

a) Calculate the equilibrium constant at 35 °C

b) Calculate ΔG when P_{HCI} = 0.42 atm, P_{H2} = 17 atm and determine the direction of the reaction at these conditions.

Note: R = 1.99 cal/mol.K = 8.31 J/mol.K

Examiners:				
Prof. Mohamed H. Shaaban	Dr. Wael A. Amer			

٨. عزم القصور الذاتي لقرص دائري كتلته M ونصف قطره a وكثافته λ حول محور مار بمركز ثقله وعمودي على مستواه يساوي	
$3Ma^{2}/2$ $Ma^{2}/4$ $Ma^{2}/4$ $Ma^{2}/4$	
ه. مركبة متجه السرعة لجسيم يتحرك بالنسبة للإحداثيات الكروية (r,θ,ϕ) في إتجاه زيادة الزاوية φ هي	

$v_{\varphi} = \dot{r}$ $v_{\varphi} = r\sin\theta$ $v_{\varphi} = (r\sin\theta)\dot{\varphi}$.	
٠١- عزوم القوى الفعالة لجسم متماسك يدور حول محو ثابت هي	
$I_0\dot{ heta}/2$. $I_0\ddot{ heta}$. $I_0\ddot{ heta}$.	
حيث θ هي الزاوية التي يصنعها متجة موضع إحدى كتل الجسم مع المحور الثابت، I_0 عزم القصور الذاتي	
للجسم حول هذا المحور.	
السؤال الثاني:	
اً. يتحرك جسيم على منحنى الكتينة التي معادلتها الذاتية $S=c\tan\psi$ بحيث يدور المماس بسرعة زاوية ω .	
برهن أن مقدار العجلة عند أي موضع يساوى $\rho \omega^2 (\frac{4\rho}{c} - 3)^{1/2}$ ، حيث ρ هو نصف قطر الآنحناء للمنحنى،	
وأن اتجاهها يصنع زاوية θ مع المماس، حيث $\tan\theta=(\cot\psi)/2$ درجة) . $\tan\theta=(\cot\psi)/2$ درجة وأن اتجاهها يصنع زاوية في مدار مركزي تساوي $\mu u^3(3+2a^2u^2)$ وقذف الجسيم من بعد μ بسرعة بسرعة باذا كان مقدار القوة المركزية في مدار مركزي تساوي μ	
$\mu u^3 (3 + 2a^2u^2)$ بسرعة من بعد $\mu u^3 (3 + 2a^2u^2)$ بسرعة من بعد $\mu u^3 (3 + 2a^2u^2)$	i
$r=a an(heta+rac{\pi}{4})$ في إتجاه يصنع زاوية $ an^{-1}(1/2)$ مع خط الابتداء، أثبت أن معادلة المسار هي $\sqrt{5\mu/a^2}$	
$r = a \tan(\theta + \frac{1}{4})$	
(۲۰ درجة)	
السوال الثالث:	١
أ. أثبت أن عزمي القصور الذاتي بالنسبة لمحورين أساسيين هما نهاية عظمى أوصغرى لعزمي القصور الذاتي حول	Í
المحورين المتعامدين عند نفس النقطة.	
ب. أوجد حاصل ضرب لمثلث منتظم قائم الزاوية كتلته M وطولا ضلعي القائمة a,b .	7
لسؤال الرابع:	1
. سرعة جسيم في الاتجاه المركزي والعمودي عليه هما $\mu \theta^2$, λr^2 على الترتيب حيث μ , ثوابت، أوجد معادلة	١
مسار الجسيم، ومركبتي العجلة في الاتجاه المركزي والعمودي عليه. (١٥ درجة)	
ب. قرص دائري يدور حول محور أفقي عمودي على مستويه ومار بنقطة 🕜 الواقعة على محيطه، فإذا بدأ القرص	۵
حركته من السكون عندما كان القطر المار بالنقطة (رأسياً أعلاها، أتبت أن ردي الفعل في اتجاهي نصف القطر	
$(7\cos\theta - 4)$ المار بالنقطة O والعمودي عليه هما $(7\cos\theta - 4)$ هما $(7\cos\theta - 4)$ المار بالنقطة	
3 3 3 3 3	
(انتهت الأسئلة)	
مع أطيب التمنيات بالتوفيق	
جنة الممتحنين: ١- أ. د. قدري زكريا مركزيا	Ĺ

TANTA UNIVERSITY **FACULTY OF SCIENCE**

CHEMISTRY DEPARTMENT

FINAL EXAM FOR SOPHOMORES (DOUBLE MAJORS) COURSE TITLE:

CHEMICAL THERMODYNAMICS (CH2141) TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

Question 1:

A) Prove that $(\delta G/\delta T)_V = -S$

DATE: JAN 09, 2016

(6 Marks) (6 Marks)

B) Define:

i) Heat of combustion

ii) Lavoisier and Laplace's law

iii) Joule-Thomson coefficient for ideal gases and real gases

C) Give reasons:

(8 Marks)

1) Free energy is an extensive property of the system

TERM: FIRST

- 2) The reaction spontaneity cannot be determined by ΔH
- 3) $\triangle E$ is considered to define the internal energy instead of E.
- 4) A simple cup of tea cannot be considered as an example of isolated system.

Question 2:

- A) Derive the relationship between temperature and volume for an adiabatic expansion (10 Marks) process of one mole of an ideal gas.
- B) Consider 2 moles of an ideal gas undergoing a reversible isothermal expansion at 25 °C from 1.00 atm and 49.6 L to 75.0 L. Determine q, w, Δ E, Δ H, Δ S and Δ G for this process. (10 Marks)

Question 3:

A) Use the following thermochemical equation:

(10 Marks)

 $\Delta_{\rm r} \, {\rm H}^{\circ} = 102.5 \, {\rm kJ}$ $\frac{1}{2}$ Cl₂ (g) + O₂ (g) \rightarrow ClO₂ (g) $\frac{1}{2} \text{ Cl}_2(g) + \frac{3}{2} \text{ O}_2(g) \rightarrow \text{ClO}_3(g)$ $\Delta_r H^\circ = 155 \text{ kJ}$

 $\Delta_r H^\circ = 272 \text{ kJ}$ $Cl_2(g) + 7/2 O_2(g) \rightarrow Cl_2 O_7(g)$

To determine Δ_r H° for 3 ClO₃ (g) \rightarrow Cl₂ O₇ (g) + ClO₂ (g)

B) A Carnot engine operates between two thermal reservoirs at 100 °C and 0 °C. What amount of work can it produce for each 1000 J of heat absorbed from the warm reservoir? (10 Marks) Calculate the efficiency of the engine.

C) Prove that $\Delta S_{system} + \Delta S_{surroundings} > 0$ for irreversible processes.

(10 Marks)

Question 4:

A) Calculate the final pressure of an ideal diatomic gas that undergoes a reversible adiabatic compression from 1bar, 298K, and 25L to 1L. Determine the final temperature (Cv (10 Marks) = 5R/2).

B) Prove that $C_p - C_v = R$

(10 Marks)

C) For the following reaction,

(10 Marks)

 $CCl_2BrH(L) + H_2(g) \leftrightarrow CClBrH_2(L) + HCl(g)$

 $\Lambda G^{\circ} = -103.72 \text{ kJ at } 35 \,^{\circ}\text{C}$

a) Calculate the equilibrium constant at 35 °C

b) Calculate ΔG when $P_{HCI} = 0.42$ atm, $P_{H2} = 17$ atm and determine the direction of the reaction at these conditions.

Note: R = 1.99 cal/mol.K = 8.31 J/mol.K

Examiners:	
Prof. Mohamed H. Shaaban	Dr. Wael A. Amer

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY FINAL EXAMINATION FOR SECOND LEVEL STUDENTS SPECIAL BOTANY, SPECIAL MICROBIOLOGY, CHMEMISTRYLBOTANT AND CHEMISTRY MICROBIOLOGY COURSE TITLE GENERAL GENETICS COURSE CODE: BO 2105

Answer the following questions:

JAN-11- 2016

DATE

I - Mark the correct answers with the sign ($\sqrt{}$) and the wrong answers with the sign (X). (30 Marks)

TOTAL ASSESSMENT MARKS 150

- **1-** Cross involving contrasting expression of the different characters referred to as monohybrid cross.
- 2- Genes must be transmitted from genration to generation via somatic cells.
- 3- Four possible gamete were produced by the trihybrid F1.
- **4-** The test cross involving crossing two homozygous contrasting phenotypes.
- **5-** The seed coat colour in garden pea is controlled by psedo-allele.
- 6- Chiasma formation at meiosis is an indication of crossing over.
- **7-** Meiosis keeps the number of somatic chromosome constant across generations.
- 8- Meiosis I is called a reductin division.
- 9- The ABO blood groups are controlled by single gene with four alleles.
- **10-** The coat colour in rabbit is controlled by five alleles.
- II Write on the following with drawing if possible: -

(120 Marks)

TIME ALLOWED 2 HOURS

- 1- Genetic significance of mitosis.
- 2- Mitotic cell cycle and C- value.
- 3- Psedo-alleles in Drosophila.
- 4- Genetic balance in Drosophila.
- 5- Types of heterochromatin.
- **6** Types of changes in chromosome number.

With all best wishes

Examiner committee: Prof. Dr. Adel El-Shanshoury

prof. Dr. Mohamed Elhiti

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

EXAMINATION FOR SECOND LEVEL STUDENTS OF (GEOLOGY) - (GEOPHYSICS) -

1		(GEOLOGY-CHEMISTRY)				
1989	COURSE TITLE:	MICE	COURSE CODE: GE 2109			
DATE:	16 JUNE, 2016	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS		

16 JUNE, 2016 DATE:

Write short notes on the following questions. Illustrate your answers with clear drawings and give examples:

(20 Marks) 1-General shape of the unilocular test (Five only)

(Five only) (20 Marks) 2- Shape of the apertures

(20 Marks) 3-Factors affecting the distribution of foraminifera

(10 Marks) 4- Mode of coiling

(15 Marks) 5- Give Examples:

A- Mixed chambers arrangement of test.

B- Surface ornamentation.

E- Lobulate periphery.

6- Choose the correct answer of the following questions:

TERM: FIRST

(15 Marks)

1. Microfossils are generally excellent indicators of

a) Tectonics

b) Earthquake

c) paleoecology

d) Paleogeography

2. Foraminifera is

a) Unicellular animal

b) Unicellular plant

c) Multicellular animal

d) Multicellular plant

3. Agglutinated foraminiferal test is formed of

a) Calcareous wall

b) Siliceous wall

c) coarse or fine cemented particles

d) Chitineous Walls

4. Porcelaneous foraminiferal test is:

a) Perforate

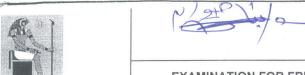
b) semiperforate

c) imperforate

d) non-perforate

5. Unilocular foraminiferal test is

a) septate


b) non septate

c) simply septate

d) limbate

Best wishes

	Prof. Mahmoud Faris Mohamed	Prof. Abdelfattah Ali Zalat
Examiners	Prof. Akmal Marzouk	

TANTA UNIVERSITY CILL TY OF SCIENCE

	DEPARTMENT OF ZOOLOGY								
	EXAMINATION FOR FRESHMEN (SECOND YEAR "ZOOLOGY" CREDIT HOURS) STUDENTS								
1509	COURSE TITLE: CELL BIOLOGY & GENETICS								
DATE:	16-1- 2016	SEMESTER:FIRST	TOTAL ASSESSMENT MARKS: 150	TIME ALLOWED:2	HOURS				

I. Cell Biology

Answer the following questions: 1.

(75 Marks)

A) Multiple-Choice Quizzes: (30 Marks)

1. Free radicals are detoxified in the body by

a. peroxisomes

b. pinocytosis

c. rER

d. lysosomes

2. Which of the following are considered anchoring junctions?

a. desmosomes

b.gap junctions

c. tight junctions

3. What will happen to animal cells placed in a hypotonic environment?

a. Nothing will happen

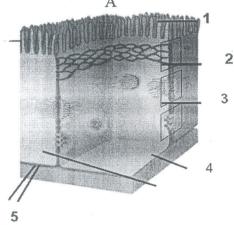
b. They will shrink due to water loss

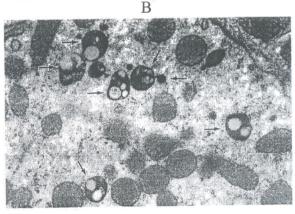
c. The cell membranes will fall apart d. They will swell and possible burst due to water gain

4. Which process accounts for the movement of solids into some animal cells?

a. active transport

b. facilitated diffusion


c. Diffusion


d. osmosis

e. phagocytosis

- 5. All of the following are the junctions in the lateral epithelial cells **EXCEPT**:
 - a. Tight junctions
- b. Desmosomes
- c. Cilia
- d. Gap junctions
- 6. Diffusion and osmosis do not require energy input from a cell. True or False
- 7. Some cells take in large molecules through the process of endocytosis. True or False
- 8. Lysosomes function in the destruction and recycling of old organelles. True or False
- 9. Autophagosome is degrading internal organelles. True or False
- 10. Peroxisomes derive from rough endoplasmic reticulum. True or False

C) Complete:

(30 Marks)

- 1. Cells are connected to neighboring cells via..... 2. Intercellular Junction is formed of...... and.......
- 3. The term for the shrinking of chromatin is
- 4. Functions of the membrane proteins are....,....
- 5. Cis Golgi network is...... while Trans Golgi network is..... 6. Early endosome is.....but the late endosome is.....
- 7. The process of a cell engulfing a solid object is.....

II. Genetics

II. Answer the following questions

(75 Marks)

A: Explain and write on the followingusing illustrated drawings if needed (30 Marks):

- 1. Based on the degree of biological complexity, what are the differences between the studies of cell biology and genetics for "biochemistry", "microbiology", "biophysics" and "Zoology".
- 2. What is the central dogma of gene expression?
- 3. Write on the Mechanisms of RNA transcription.
- 4. Write what you have learned in lectures about the genome guard, p53 gene, and its role in triggering the DNA damage repair or cell death.
- 5. The structure and role of the promoter sites in prokaryotes and eukaryotes.
- 6. Redundant genetic code.
- 7. Posttranslational modifications.
- 8. What is the significance of histones in nucleotide formation, function and stability?
- 9. Mechanisms of erasing primers after S-phase of the cell cycle.
- 10. Main enzymes used in BER.

B: Complete the following	(10 Marks):
---------------------------	-------------

- 1. Each ------which an organism can produce, is encoded in a piece of the DNA called-----
- 2. The van der Waals physical force between nucleotides is called ------
- 3. After hair pin is formed, the ----- will ----- of the template.
- 4. The left-handed helix with a----phosphate backbone is-----
- 5. Proteins that slide along DNA to recognize damage and flip out bases are -----

C. Define in brief (15 Marks):

- a) p-factor
- b) coding region in eukaryotes
- c) transcription initiation complex

- d) the hybrid helix
- f) primase, RNA Polymerase, Poly A polymerase

D. True ($\sqrt{\ }$) or False (X) (if false, write the correct answer) (20 marks):

- 1. DNA polymerase II is the main enzyme for DNA replication in Xeroderma pegmintosum.
- 2. DNA and mRNA are always double stranded.
- 3. Formation of the hair pin is the only method for transcription termination.
- 4. NER happens daily inside our bodies.
- 5. A-DNA, B-DNA and Z-DNA could occur in the same chromosome.
- 6. ABC enzyme cuts the Thymine dimers only in eukaryotes but not in prokaryotes.
- 7. A kink in DNA could cause a double strand break.
- 8. DNA methylation controls gene expression.
- 9. Histones in chromatin control gene expression.
- 10. A karyotype is the combination of DNA and proteins that make up the contents of the nucleus of a cell.

Examiners	Prof. Nabila I. El-Desouki
	Prof. Elsayed I. Salim

BOTANY DEPARTMENT - TANTA UNIVERSITY - FACULTY OF SCIENCE

Examination / Second level / Chem.-Botany & Chem.-Biochemistry Students

Course Title:

General Genetics

Course Code: BO2105

2 January 2014

Term: First

Total assessment marks: 150 | Time Allowed: 2 hours

ANSWER THE FOLLOWING QUESTIONS

- 1. Mark the right statements with the sign ($\sqrt{}$) and the wrong answers with the sign (\times) of the following statements (28 Marks)
 - a) Crossing over shuffles alleles on the same chromosome into new combinations.
 - b) Using probability is much slower than using the Punnett square for crosses that include multiple loci.
 - c) Incomplete dominance indicates phenotype blending.
 - d) Pigmentation phenotype of wheat grains is controlled by four genes.
 - e) The principle of independent assortment is not really an extension of the principle of segregation.
 - f) Transmission Genetics deals with basic principles of heredity.
 - g) The number of linkage groups is the number of types of chromosomes of the species.
 - h) Any quantitative trait is independent on the interaction between multiple genes and the environment.

Luis	Complete the following sentences (52 Marks)	
	a- Dominance involves suppression while epistasis requires	suppression.

- b- A dihybrid testeross produces a c- The term linkage has two related meanings...... and.......
- d- Pea seed shape gene encodes an enzyme known as which catalyzes the
- conversion of into e- In eukaryotic, each chromosome consists of which is highly folded and condensed.
- f- X and Y chromosomes are called while all other chromosomes in the genome are called
- g- Albinism is an example of that influencing a number possibly unrelated
- h- Heritability is a measure of among individuals.
- i- A recombination map unit is called and a map unit is equal to between 2 genes in 1% of the gametes.
- j- Gene interaction is of two types...... and gene interaction.

أنظر الخلسف

3. Write short notes on the following (30 Marks)

- a. Lethal alleles (genes).
- b. Molecular explanation for complementary gene action in case of flower color phenotype of sweet pea.

4. Solve the following genetic problem (40 Marks)

In fruit flies, curved wings are recessive to straight wings, and ebony body is recessive to gray body. A cross was made between true-breeding flies with curved wings and gray bodies to flies with straight wings and ebony bodies. The F1 offspring were then mated to flies with curved wings and ebony bodies to produce an F2 generation.

- a. Diagram the genotypes of this cross, starting with the parental generation and ending with the F2 generation.
- b. What are the predicted phenotypic ratios of the F2 generation?
- c. Let's suppose the following data were obtained for the F2 generation:
 - i. 114 curved wings, ebony body
 - ii. 105 curved wings, gray body
 - iii. 111 straight wings, gray body
 - iv. 114 straight wings, ebony body

Conduct a chi square analysis to determine if the experimental data are consistent with the expected outcome based on Mendel's laws.

Good Luck

Dr. Reda Gaafar

Tanta University, Faculty of Science, Department of Chemistry

Final Examination of (Organic Chemistry 1) for 2nd year students of Chem.(Micro.,

Bio., Bot.) and special Microbiology.

Jan. 2014 Total Assessment: 100 Course Code: CH2143 Time Allowed: 2hrs

Answer the following questions	
1] Put ($\sqrt{}$) or (x) and correct the wrong answer (Explain your answer). (30 ma	arks)
1) T.N.B can be prepared by direct nitration of benzene.	()
2) In benzene, all carbons are SP ³ hybridized and all C-C bonds are equal in length.	()
3) Aniline is more basicity than Benzyl amine.	()
4) Oxidation of <i>p</i> -nitro- <i>tert</i> -butyl benzene by (KMnO ₄) gives <i>p</i> -nitro-benzoic acid.	()
5) Sulphonation of phenol at 25 °C gives o-phenol sulphonic acid.	()
6) Reaction of benzene with 2-methyl propene in acid medium gives 2-methyl-1-pher	
propane as a major product.	().
7) OH is meta-directing group in benzene & halogen has (+I,-M) effect on benzene.	()
8) p- Amino phenol is more acidic than p-Cyano phenol.	()
9) Nitration of 4-nitro- anisol gives 3,4-di-nitro- anisol.	()
10) Cyclopentadienyl anion is not aromatic compound.	()
2] Carry out of the following conversions: (25 marks)	
1- Acetylene to Sulphanilamide.	
2- Bromo benzene to m-Nitro benzoic acid.	

- 3- Aniline to 100% o-bromophenol.
- 4- Toluene to Aspirine
- 5- Benzene to Mandelic acid.
- 3] Complete the following equations and name the final product. (22 marks)

Tanta University, Faculty of Science, Department of Chemistry

Final Examination of (Organic Chemistry 1) for 2nd year students of Chem.(Micro., Bio., Bot.) and special Microbiology.

Jan. 2014 Total Assessment: 100 Course Code: CH2143 Time Allowed: 2hrs

THE PROPERTY OF THE PROPERTY O	AND PARTY BEACHING TAKEN THE PARTY BEACHING
Answer the following questions	
1] Put $(\sqrt{\ })$ or (x) and correct the wrong answer (Explain your answer). (30 ma	arks)
1) T.N.B can be prepared by direct nitration of benzene.	()
2) In benzene, all carbons are SP ³ hybridized and all C-C bonds are equal in length.	()
3) Aniline is more basicity than Benzyl amine.	()
4) Oxidation of p-nitro-tert-butyl benzene by (KMnO ₄) gives p-nitro-benzoic acid.	()
5) Sulphonation of phenol at 25 °C gives o-phenol sulphonic acid.	(x_i)
6) Reaction of benzene with 2-methyl propene in acid medium gives 2-methyl-1-phe	nyl
propane as a major product.	().
7) OH is meta-directing group in benzene & halogen has (+I,-M) effect on benzene.	()
8) p- Amino phenol is more acidic than p-Cyano phenol.	()
9) Nitration of 4-nitro- anisol gives 3,4-di-nitro- anisol.	()
10) Cyclopentadienyl anion is not aromatic compound.	()
2] Carry out of the following conversions: (25 marks)	
1- Acetylene to Sulphanilamide.	
2- Bromo benzene to m-Nitro benzoic acid.	
3- Aniline to 100% o-bromophenol.	
4- Toluene to Aspirine	
5- Benzene to Mandelic acid.	
3] Complete the following equations and name the final product. (22 marks)	
a) Benzamide + Br ₂ KOH A NaNO2 B CH ₃ OH C	
b) Phenol (O)	
c) Aniline 2CH ₃ I A NaNO2 B HCl	
d) Toluene + CISO ₃ H A NH ₃ B (O) C Heat D	

e) Phenol + Benzoyl chloride _____ A AlCl₃ B + C

Tanta University
Faculty of Science
Department of Chemistry

Principles of Analytical Chemistry (CH2105) (First Semester Test - Level two)

كيمياء/ كيمياء حيوي - كيمياء/ نبات - كيمياء/ ميكروبيولوجي - نبات - ميكروبيولوجي

(First Semester Test - Level three) کیمیاء/ جیولوجیا

December 31, 2013	Total Assessment Marks: 100	Time Allowed: 2
(I)- Write (√) for the tru	e and (×) for false statements, (Give	the reasons):
	(65 Marks)	
1) Acid media must be a	voided in determination of Cl by titrat	ion with AgNO ₃ ()
2) ph.ph is dibasic acid w	hile M.O is Monoacidic base	()
3) For determination of (CNS by titration with Hg ⁺² ions white	precipitate of mercury
nitroprosside is forme	d at the end point.	()
4) Weak acid of $pK_a \le 10$	⁷ give sharp end point.	. ()
5) For saturated solution	of AgCl ($K_{sp}(AgCl) = 1.2x10^{-10}$), wh	nite precipitate can be
observed.		
6) The useful pH range of	f ph.ph is 8-10.	()
7) For titration with ED?	ΓA, metal-EDTA complex must be le	ess stable than metal-
indicator complex.		()
8) Detection of end poin	nt in "Mohr method" is the formation	on of a soluble color
compound.		()
9) 2.5 gm of Na ₂ CO ₃ diss	olved in 500 ml of water. Normality of	of this solution is 0.05
	sht: Na = 23, C = 12, and \ddot{O} = 16 gm/n	
10) Upon addition of S ⁻²	as precipitant agent to mixture of (A	g ⁺ and Hg ⁺²), Ag ₂ S is
	$HgS(K_{sp}(Ag_2S) = 2x10^{-29} \& K_{sp}(HgS)$	
	solve in HCl but it can dissolve in HN	
	6 V vs. NHE and $E^{o}_{H2/H+} = 0.0$	()
12) H ₃ PO ₄ can not be titra	ted stepwise with NaOH ($K_{al} = 7.5 \times 10^{-3}$	0^{-3} , $K_{a2} = 6.2 \times 10^{-8}$ and
$K_{a3} = 1 \times 10^{-12}$		()
13) Cu ⁺² can almost comp	letely complexed with EDTA at pH 3.5	5

طيفانا الأسانة في عالما المناها وقال

3. a. Calculate the rank correlation coefficient for the following data:

X	Excellent	Good	V. good	Good	V. Good	Good
Y					V. good	

b. Let X be a random variable having a normal distribution with mean equals 3 and variance equals 4; find the following probabilities:

i.
$$p(X > 5)$$

iii.
$$p(X > 1.5)$$

ii.
$$p(4.5 < X < 5)$$
 iv. $p(1 < X < 5)$

iv.
$$p(1 < X < 5)$$

c. If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001, determine the probability that out of 2000 individuals: (i) Exactly 3, (ii) at least 2 individuals will suffer a bad reaction.

Good Luck

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.000	0.004	0.008	0.012	0.016	0.019	0.024	0.028	0.032	0.036
0.0	0.040	0.044	0.048	0.052	0.056	0.060	0.064	0.068	0.071	0.075
0.1	0.079	0.083	0.087	0.091	0.095	0.099	0.103	0.106	0.110	0.114
0.2	0.118	0.122	0.126	0.129	0.133	0.137	0.141	0.144	0.148	0.152
0.4	0.155	0.159	0.163	0.166	0.170	0.174	0.177	0.181	0.184	0.188
0.5	0.192	0.195	0.199	0.202	0.205	0.209	0.212	0.216	0.219	0.222
0.6	0.226	0.229	0.232	0.236	0.239	0.242	0.245	0.249	0.252	0.255
0.7	0.258	0.261	0.264	0.267	0.270	0.273	0.276	0.279	0.282	0.285
0.8	0.288	0.291	0.294	0.297	0.300	0.302	0.305	0.308	0.311	0.313
0.9	0.316	0.319	0.321	0.324	0.326	0.329	0.332	0.334	0.337	0.339
1.0	0.341	0.344	0.346	0.349	0.351	0.351	0.355	0.358	0.353	0.362
1.1	0.364	0.367	0.369	0.371	0.373	0.375	0.377	0.379	0.381	0.383
1.2	0.385	0.387	0.389	0.391	0.393	0.394	0.396	0.398	0.400	0.402
1.3	0.403	0.405	0.407	0.408	0.410	0.412	0.413	0.415	0.416	0.418
1.4	0.419	0.421	0.422	0.424	0.425	0.427	0.428	0.429	0.431	0.432
1.5	0.433	0.435	0.436	0.437	0.438	0.439	0.441	0.442	0.443	0.444
1.6	0.445	0.446	0.447	0.448	0.450	0.451	0.452	0.453	0.454	0.455
1.7	0.455	0.456	0.457	0.458	0.459	0.460	0.461	0.462	0.463	0.463
1.8	0.464	0.465	0.466	0.466	0.467	0.468	0.469	0.469	0.470	0.471
1.9	0.471	0.472	0.473	0.473	0.474	0.474	0.475	0.476	0.476	0.477
2.0	0.477	0.478	0.478	0.479	0.479	0.480	0.480	0.481	0.481	0.482
2.1	0.482	0.483	0.483	0.483	0.484	0.484	0.485	0.485	0.485	0.486
2.2	0.486	0.486	0.487	0.487	0.488	0.488	0.488	0.488	0.489	0.489
2.3	0.489	0.490	0.490	0.490	0.490	0.491	0.491	0.491	0.491	0.492
2.4	0.492	0.492	0.492	0.493	0.493	0.493	0.493	0.493	0.493	0.494

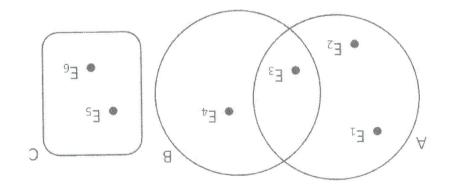
612-6120+6124-6000

EXAMINATION for 2 TH LEVEL (CHM-BOTANY/MICROBIOLOGY/BIOCHEMISTRY) TNAMTRAGITY - FACULTY OF SCIENCE - MATHEMATICS DEPARTMENT

COURSE TITLE: Introduction to Statistics (ST2105)

TIME ALLOWED: 2 Hours

TOTAL ASSESSMENT MARKS: 50


TERM: First

DATE: 28 December 2015

Answer the following questions:

Final Examination Paper

 $\delta Z.0 = (_{\delta}\mathcal{A})q \text{ bns } 1.0 = (_{\xi}\mathcal{A})q = (_{\xi}\mathcal{A})q, 0 \\ \mathcal{E}_{(\xi)} = (_{\xi}\mathcal{A})q, 0 \\ \mathcal{E}_{(\xi)} = (_{\xi}\mathcal{A})q \text{ and } 0 \\ \mathcal{E}_{(\xi)}$ accompanying Venn diagram. The probabilities of the sample points are 1. a. A sample space contains six sample points and events A, B, and C as shown in the

b. The following data are sorted in an ascending order; find X, Y, Z and W; if the Find: p(A), p(B), p(C), $p(A \cup B)$, $p(A \cap B)$, $p(A \cap B)$, $p(A \cap C)$, $p(B \cup C)$

average = 11, the median = 7.5, the mode = 7 and the range = 20:

3, 4, 6, 7, X, X, Z, 18, 20, W

2. a. For the following data:

		,	. 20	11 1	
I	5	t	S	L	X
3	t	9	3	S	X

i. Find Pearson correlation coefficient.

ii. Find the equation of the regression line.

iii. Estimate the value of Y when X=10.

b. Consider the following probability distribution for the number of cars he expects

to sell on a particular Thursday:

		r r r	~ -	
₽ħ	p/	pç	Pt	(X) q yilidadorq
6		t	0	Number of cars sold (X)

Find the value of the constant d and the Standard deviation.

- d. Stemmata are the only visual organs of adult Lepidoptera.
- e. Subgenual organ subserves sound perception in male mosquito.

<u>2</u>-Indicate whether the following statements are true (T) or false (F) if the statement is false correct the wrong part so that the statement is true: (Total: 10 Marks, 2 each)

- a. The tritocerebral lobes are joined together by means of circumoesophageal connectives. ()
- b. Sensory neurons are always bipolar neurons. ()
- c. Campaniform sensilla are tactile sensilla. ()
- d. Compound eye is a compound structures composed of a group of units called scolopedia. ()
- e. In vermiform larvae the body is elongate, cerci, antennae, and legs are well-developed. ()
- <u>3-</u> Briefly discuss the basic components of the insect integument and moulting process. (20Marks)
- <u>4-</u> Compare between the insect's mechanosensory, olfactory, and gustatory sensilla. <u>(10 Marks)</u>

PART III (50 MARKS)

Write short notes on the following:

- 1- Types of enzymes secretion in midgut of insects. (10 marks)
- 2- Differences between filter chamber and fermination chamber of insects. (10 marks)
- 3- Function of haemolymph in insects. (10 marks)
- 4- Types of reproduction and ovaries of insects. (10 marks)
- 5- Mechanism of excretion through Malpighian tubules. (10 marks)

GOOD LUCK!

EXAMINERS

Prof.Dr. Saieed Naieem

Dr. Samar Ezzat

Dr. Mervat Abou Seada

الوولوك

1969

TANAT UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF ZOOLOGY

SECOND LEVEL CHEMESTRY AND ENTOMOLOGY STUDENTS

COURSE TITLE:

Morphology & Anatomy

COURSE CODE: EN2121

DATE:28/12/ 2015 JUNE 2016 TOTAL ASSESSMENT MARKS: 150

TIME ALLOWED: 2 HOURS

(يتكون الاعتمان من صفعتين) PART I (50 MARKS)

	(Total: 10 marks, 5 each)
1-Discu	iss the following items
	Orientation of the head Wing coupling mechanisms Total: 15
2. 2. Com	pare with fully labeled drawing between each of the following (Total: 15
marks)	
1-	Chewing and siphoning mouth parts (10 marks)
	1 marks ontonnae () marks)
3-Men	Setaceous and serrate antennac (5 mans) tion the modification and the representative insect of the following: (Total:
5 mark	Jumping leg 2- Collecting leg
4-Com	In insect head, suture meanswhile sulcus means
b.	Sponging mouth parts consist of three regions:and
d.	have hemielytron wing.
e.	Halters present in They help in
f.	The abdomen of gravid female termites is
g.	Cerci usually function as
h.	
i.	All piercing sucking mouth parts are modified into
j.	have digging legs that help in

PART II (50 MARKS)

- 1-Correct the following statements: (Total: 10 Marks, 2 each).
- a. Coarctate pupae are with the legs and wings glued to the body of the pupa.
- b. The stomatogastric sympathetic nervous system innervates the reproductive system and hind gut.
- c. Apolysis is the formation of the new cuticle on the epidermis.

5) According to the Lewis def	inition, an acid is species						
a) Electron pair donor	b) Proton donor	c) Electron pair acceptor					
6) Mohr 's method is only use a) Cl and Br	ed for determine b) I and CN	c) Cl ⁻ , Br ⁻ , I ⁻ and CN ⁻					
7) Indicator used in determina a) ph.ph	ation of metal ions with EDTA b) Erio. T	by "alkalimetric method" is c) M.O					
8) In determination of chloride ion (Cl') by Mohr 's method, the first precipitate is:							
a) AgSCN	b) Ag ₂ CrO ₄	c) AgCl					
9) For determination of I by "Volhard's method", Fe ³⁺ ions as indicator must be added							
a) after excess of AgNO ₃	b) after titration with KSCN	c) before excess of AgNO ₃					
10) Equivalent weight of KMnO ₄ in acid media is							
a) Mol Wt/ 1	b) Mol Wt/ 5	c) Mol Wt/3					
Question (3): Answer " five " only of the following: (40 Marks)							
	- Control of the Cont	. ,					
	emasking" agents. Explain the	. ,					
1) Define "Masking" and "De	- Control of the Cont	ir roles with examples.					
 Define "Masking" and "Define "Masking" and "Define "Masking" and "Define "A stepwise or not 0.1 N is stepwise or not ? - What suitable indicators that can 	emasking" agents. Explain the ad Zn^{2+} in a mixture using ED H_2CO_3 ($K_1 = 4.2 \times 10^{-7}$ and K_3 are the pH values at the point be used to detect them?	ir roles with examples.					
 Define "Masking" and "Define "Masking" and "Masking" and "Define "Masking" and "Define "Masking"	emasking" agents. Explain the ad Zn^{2+} in a mixture using ED H_2CO_3 ($K_1 = 4.2 \times 10^{-7}$ and K_3 are the pH values at the point be used to detect them?	ir roles with examples. TA. $K_2 = 4.8 \times 10^{-11}$) with 0.1 N NaOH					
 Define "Masking" and "Define" Determine each of Mg²⁺and Is the titration of 0.1 N is stepwise or not? - What suitable indicators that cand Differentiate between "alka" If the pH of solution contents 	emasking" agents. Explain the ad Zn^{2+} in a mixture using ED H_2CO_3 ($K_1 = 4.2 \times 10^{-7}$ and K_3 are the pH values at the point be used to detect them?	ir roles with examples. TA. $K_2 = 4.8 \times 10^{-11}$) with 0.1 N NaOH ssible equivalence points and the					
 Define "Masking" and "Define" Determine each of Mg²⁺and Is the titration of 0.1 N is stepwise or not? - What suitable indicators that cand Differentiate between "alka" If the pH of solution contents 	emasking" agents. Explain the ad Zn^{2+} in a mixture using ED H_2CO_3 ($K_1 = 4.2 \times 10^{-7}$ and K_4 are the pH values at the point be used to detect them? Taining (10^{-3} M MnO ₄ + 10^{-4}) the potential of this half reaction	ir roles with examples. TA. $C_2 = 4.8 \times 10^{-11}$) with 0.1 N NaOH ssible equivalence points and the					
 Define "Masking" and "Define" Determine each of Mg²⁺ and Is the titration of 0.1 N is stepwise or not? - What suitable indicators that can Differentiate between "alka" If the pH of solution continuous equation and determine the State the rules of writing has 	emasking" agents. Explain the and Zn^{2+} in a mixture using ED H_2CO_3 ($K_1 = 4.2 \times 10^{-7}$ and K_4 are the pH values at the point be used to detect them? Alimetry" and "acidimetry". Etaining (10^{-3} M MnO ₄ + 10^{-4}) to potential of this half reactional f-cell reaction.	ir roles with examples. TA. $K_2 = 4.8 \times 10^{-11}$) with 0.1 N NaOH ssible equivalence points and the					

Good Luck

Examiners	Prof. Dr. Mohamed Youssry El-Sheikh			
	Prof. Dr. Hanaa Salah El-Desoky			
	Dr. Marwa Nabeeh El-Nahass			

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY EXAMINATION FOR SECOND YEAR STUDENTS PRINCIPLES OF ANALYTICAL CHEMISTRY COURSE CODE: CH2105 TITLE: DATE: 6-1-2016 TERM: FIRST TERM TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

Question (1): Write $(\sqrt{\ })$ for the true and (\times) for false statements and give the reasons for your answer:

Choose only <u>"ten "</u> of the fol	lowing:		(30 Ma	rks)				
1) A ppm is the number of pa	arts of solute per billi	on parts of the solution.	()				
2) End point in "Mohr's met	hod" is the formation	of a soluble color compound.	()				
3) Metal-EDTA complex mu	()						
4) For weak polyprotic acids	()						
5) Acid media must be avoid	()						
6) Direct determination of N	()						
7) The useful pH range of p	()						
8) Lower the pH, higher wo	()						
9) Determination of halide b	,)						
10) H_3PO_4 can not be titrated stepwise with NaOH ($K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-8}$								
and $K_{a3} = 1 \times 10^{-12}$))				
11) The metal which forms more stable complex with EDTA can be determined								
by displacement reaction with Mg-EDTA complex.)				
12) KMnO ₄ is strong reducing	ng agent.		()				
Question (2): Choose the co	orrect answer and gi	ve the reasons:						
Choose only "ten" of the following:								
1) Indicator used in determination of "chloride ion" using Volhard's method is								
a) K ₂ CrO ₄	b) Fe(NO ₃) ₃	c) Erio T						
2) To determine Zn ²⁺ by complex EDTA titration, the medium must contain								
a) KCN	b) НСНО	d) NH ₄ Cl + NH ₄ OH						
3) pH of 0.01 M Ba(OH) ₂ so	lution is							
a) 12.3	b) 1.7	c) 1.0						
4) Very sharp end point was obtained with an acid of ionization constant equals:								
a) 10 ⁻²	b) 10 ⁻⁷	c) 10 ⁻¹²						
	Please go to ne	xt page						