

المستوى الثانى علوم المواد

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

EXAMINATION OF (LEVEL TWO) STUDENTS OF PHYSICS

COURSE TITLE: Mathematical physics 2

61612017 FINAL EXAM COURSE CODE: PH 2262

DATE:

TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

Answer the following questions:

First question:- Q5 Marks)

(i) Observe that y = x is a solution of

$$y'' - [(x+2)/x]y' + [(x+2)/x^2]y = 0$$

And solve

$$y'' - [(x + 2)/x]y' + [(x + 2)/x^2]y = x e^x$$

 $y// - 5y/+ 6y = x^2 e^{3x}$ (ii) Solve

Second question:- (25 Marks)

Solve

(i)
$$y//+3y/+2y=e^x-3$$

(ii)
$$\Gamma(1/3) \Gamma(2/3) = ??$$

(iii)
$$\beta(x,y)$$
 at x=4, y=7

Third question: - (25 Marks)

Prove that,

$$\Gamma(x+1)=x \Gamma(x)$$

Find.

$$\int_0^1 x^7 (1-x)^8 \ dx \qquad 2 \int_0^{\pi/2} \sin^7(x) \cos^8(x) \ dx$$

Fourth question:- (% marks)

- (i) Write about Angular momentum operators
- (ii) find, $x^2T'' + xT' + (x^2-1/4)T = 0$

EXAMINERS	DR. Atef Elbendary	
	أطيب التمنيات بالتوفيق	

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

FINAL EXAM. FOR MATERIALSCIENCE(LEVELTWO)

COURSE TITLE: Mechanical Properties

COURSE CODE: MS2232

SEMESTER:TWO TOTAL ASSESSMENT MARKS: 100

PHYSICS DEPARTMENT
TIME: 2 HOURS

Answer the following questions:

Question [1]:

(20 Mark)

Put $(\sqrt{)}$ (1 Mark) or (X) (2 Marks) for the following and then correct the false:

- **a-**The response of a material to applied forces depends on the type and nature of the bond and the structural arrangement of atoms, molecules or ions.
- b-Pure shear: Normal Stresses in 3 directions; no Shear Stress.
- c-Directed Stress: Stress that varies with direction.
- **d**-Ultimate tensile strength: the practical value of the proportional limit; found using the 0.2% offset rule.
- e-Infinitesiml Strain: Strain larger than a few percent.
- **f**-In brittle materials-little plastic deformation and low energy absorption before fracture.
- g-Ductility is a fundamental property of materials.
- h-Resilience is a measure of the ability of a material to absorb energy up to fracture.
- i-Properties of twinning: small amount of deformation when compared with slip.
- j-Crack propagation is fast Propagates nearly parallel to direction of applied stress.
- k-Brittle fracture is preferred in most applications.
- **l-**The dislocation energy increases linearly with the Burgers' vector $\overline{\mathbf{b}}$.
- m-As temperature increases a brittle material can become ductile.

Question [2]:

(30 Mark)

Write short notes about the following:

(i) -Stress - Strain Curve. (10 Marks) & (ii)- Basic deformation types for load carrying materials. (10 Marks) & (iii)-Modulus of Rigidity. (10 Marks)

Mechanical Properties(MS2232) →24-05-2017

انظر خلف الصفحة

Question [3]:

(26 Mark)

a-Explain the following:

(10 Mark)

-Plastic deformations in polycrystalline metals.

b-Describe the following Figures:

(16 Mark)

Fig.1

Fig.2

Question [4]:

(24 Mark)

Problems:

- 1-(a) A 10-mm-diameter Brinell hardness indenter produced an indentation 2.50 mm in diameter in a steel alloy when a load of 1000 kg was used. Compute the HB of this material.
- (b) What will be the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used?

 (6 Marks)
- 2-A 2kg mass is hung from a steel wire of original length 2m and diameter 0.64mm. The extension produced is 0.60mm. Calculate Young's modulus for steel. ($g=10m/s^2$).

(6 Marks)

- 3-Compute the strain-hardening exponent n for an alloy in which a true stress of 50,000 psi produces a true strain of 0.08; assume a value of 140,000 psi for K. (6 Marks)
- **4-**A 5.00-cm cube of gelatin has its upper surface displaced 1.00 cm by a tangential force 0.500 N. What is shear modulus of this substance?

(<u>6 Mark</u>s)

Examiner

Dr. Samy El-Attar.

Good luck

Mechanical Properties (MS2232) →24-05-2017

انظر خلف الصفحة

	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS						
	SECOND YEAR (MATERIAL SCIENCE)						
	COURSE TITLE:	تيار متردد		COURSE CODE: MS2242			
DATE:	31-5- 2017	TERM: S	ECOND	TOTAL ASSESSMENT MARKS:100	TIME ALLOWED: 2 HOUR		

Please Answer the Following:

Question (1):

- (a) Define the effective current and derive its formula for a sinusoidal A.C. current.
- (b) Plot a schematic of the oscilloscope.
- (c) Calculate using the vector method the total impedance and the phase angle of $R,\,L,\,C$ in series.

(25Marks)

Question (2):

- (a) Calculate the current across and the impedance of the giving circuit in fig (1).
- (b) Find the equilibrium conditions of Hay Bridge as shown in fig (2).

(25Marks)

Question (3):

- (a) Explain the half wave rectifier and calculate the DC average voltage.
- (b) Resonance ac circuit consists of a coil, a capacitor, and a resistance in series. The self-inductance of the coil is 100 μ H. The capacitance of the capacitor is 0.0001 μ F and the resistance is 10 Ohm. If the applied voltage across the circuit is 0.1 volt, calculate the resonance frequency and the voltage across the coil and the capacitance.

(25Marks)

Question (4): Write short notes on:

- (a) The diode approximations.
- (b) Characteristic curve of a diode.
- (c) Energy bands.

(25Marks)

- AFT 7
 - 2-a) How will you determine the wave length by using Michelson interferometer.
 - b) In Newton's ring experiment, if drop of water (n=1.33) be placed in between the lens and the plate, the diameter of 10^{th} ring is found to be 0.6 cm, obtain the radius of curvature of the face of the lens in contact with the plate. (λ of light used 6000A)
 - 3- Derive an expression for the intensity at a point in the Fraunhofer type of diffraction produced by N nearby parallel narrow slits illuminated by monochromatic light.
 - 4- a) Give three methods producing plane polarized light.
 - b)Calculate the least width of a plane diffraction grating having 500 line /cm which will just resolve in the second order the sodium lines of wavelength 5890 and 5896 A⁰

Good luck

Secold Slopers

	TANTA UNIVERSITY- Faculty of Science -Department of Physics					
	EXAM FOR LEVEL TWO STUDENTS OF PHYSICS AND MATERIAL SCIENCE					
	· COURSE TITL	Elect Elect	tromagnetism2	COURSE CODE: 2184		
DATE:	27 -5- 2017	TERM: SECOND	TOTAL ASSESSMENT MARKS:	TIME ALLOWED: 2 HOURS		

First Question:

- 1- Find the relation between the current density (J) and the velocity of volume charge density (ρ_v).
- 2- By using an appropriate closed path and Gaussian surface find the boundary conditions equation at the interface between two perfect dielectric materials. (15Markes)

Second Question:

- 1- (a) Solve Laplace's equation for the potential in the homogeneous region between two concentric conducting spheres with radii a and b, b > a if V = 0 at r = b, and V = V0 at r = a.

 (b) find the capacitance between them.
- 2- Given the potential field $V = (A\rho^4 + B\rho^{-4}) \sin 4\varphi$:
- a) Show that $\nabla^2 V = 0.0$.
- b) Select A and B so that V = 100V and |E| = 100 V/m at $P(\rho = 1, \varphi = 22.5^{\circ}, z = 2)$. (15 Markes)

Third Question:

- 1- Define Boit-Savart law, then using it deduces the magnetic field around:
 - (a) long filament carrying current I, (b) Limited filament carrying current I.

(20Markes)

2- Find the current density (J) inside and outside long filament carrying current I.

(10 Markes)

Forth Question:

1- State and explain the four Maxwell equations in the static conditions.

(10 Markes)

2- Evaluate both sides of Stokes' theorem for the field $G=10\sin\theta~\alpha_{\phi}$ and the surface r=3,

 $0 \le \theta \le 90^{\circ}$, $0 \le \varphi \le 90^{\circ}$. let the surface have the a_r direction.

(10Markes)

m				2	
1	X	0	m	TM	PY

Dr: Reda El Shater

A, Y

اختبار نهانى فيزياء حديثة القصل الثاني للعام الأكاديمي ١٦٠١٦-٢٠١٧ الزمن ساعتان

كلية العلوم قسم الفيزياء

اسم الطالب

ثابت بلانك = 6.62×10^{-34} شحنة الالكترون = 1.6×10^{-34} كولوم

2.1×10⁻³¹ Kg كتلة الالكترون

ثابت كولوم 10⁹ K= 9x10

First question

(12 marks)

Choose the correct answers after each sentences:

1- The work function of Cu is 4.7ev, the photon frequency needed to produce photo electrons with E_{max}=10ev is

 $5.35 \times 10^{13} \text{Hz} - = 3.55 \times 10^{11} \text{Hz} - = 3.55 \times 10^{15} \text{Hz} - = 1$ 5.35x10¹⁰Hz - 3

2- A photon with wavelength $\lambda = 0.7$ A make a collision with rest electron, after collision its wavelength becomes $\lambda = 0.724A$, the K.E of electron is

385ev - 3

588ev - 7

288ev – ب

825ev - 1

3- The λ_{max} = 4900 A for solar radiation, the temperature of sun surface is (Wien constant b=2.9 x 10^{-3})

د- 8591k

ب – 9517k – ج

5918k - 1

4 - Kinetic energy of the electron, which must possess in order to have 1A wavelength associated with the movement .

350ev - 2

250ev - 5

150ev - ب

510ev - 1

Essay questions:

second question

(32 marks)

- 1- Prove that the length L contracts when moving by velocity V
- 2-Provethat $\varphi_0 = h \vartheta_0$ where ϑ_0 is threshold frequency for photoelectric emission and φ_0 the work function.
- 3-a- Prove That $k = \left[1 + \frac{v^2}{2C^2}\right]$ if $c \gg v$
- b- Prove that the relative and classical kinetic energy are the same when $c \gg v$.

hنظر خلف الورقة

Third question

(36 marks)

a-Prove that the particle velocity is given by $v = c \left[\sqrt{1 - (\frac{E_0}{E})^2} \right]$

Where E and E_0 are the total and rest energies respectively.

b-From conservation of energy and momentum, Compton obtain the equation $m_0 c^2 (\vartheta - \vartheta) = h \vartheta \vartheta (1 - \cos \varphi)$. Determine $\Delta \lambda$ as a function of scattering angle φ .

The fourth question

(20 marks)

a- Diffraction of the first order of the electrons with energy 54ev occurs from Ni crystal of interlayer distance d = 2.15 A at the diffraction angle θ = 50° . Calculate the wavelength associated by considering the electron is a wave and then as a particle.

b- Prove that when the electron-positron is annihilated, two photons are produced with the same energy.