



المستوى الثالث كيمياء /الجيولوجيا

# TANTA UNIVERSITY **FACULTY OF SCIENCE**

DEPARTMENT OF CHEMISTRY

FINAL EXAMINATION FOR ALL DOUBLE MAJOR THIRD LEVEL STUDENTS

COURSE TITLE:

(Coordination Chemistry)

COURSE CODE:

CH3246

DATE:

1.JUNE 2017

TERM: SECOND TOTAL ASSESSMENT MARKS

TIME ALLOWED: 2 HOURS

# Answer the following Questions:

- 1-) For each complex define the following: (Total marks 20)
- 1-Name

2- The type of isomerism

3- The type of hybridization

4- Calculate the magnetic moment

I-)  $[Mn (H_2O)_6]Cl_2$ 

(5marks)

II-)  $K_2 \left[ Zn(CN)_4 \right]$ 

(5marks)

III-) K<sub>2</sub>[Ni(NO<sub>2</sub>)<sub>4</sub>]

(5marks)

IV-) Na<sub>3</sub>[Co Cl<sub>6</sub>]

(5marks)

- 2-)A -)Iron ion forms an inner diamagnetic complex ion containing the cyano ligand. Derive the formulae of the complex. (4marks)
- B-) Discuss the effect of central metal ion and its charge on  $\Delta_0$  value. (4marks)
- C-) Manganese (II) ion forms inner complex ion with cyano ligands. Calculate the magnetic moment value of the complex. (4marks)
- D-) Discuss the hydration isomerism with example. (3marks) (Total marks 15)
- 3-) A-) Wite full account on Jahn-Teller effect with examples (5marks)
- **B-)** What is the formula of the following complex:

(2marks)

Tetrammine copper (II) hexachloro copperate (II)

- C-) For the two complexes: 1-) Hexammine cobalt(III) chloride (8marks)
- 2-)Potassium hexacyano ferrate (II)
- a-)Draw the d- orbital splitting indicate the number of electrons in t<sub>2g</sub> and e<sub>g</sub>
- b-) Calculate the CFSE value and magnetic moment for each complex. (Total marks 15)

Note: (Atomic number for Mn 25, Fe 26, Co 27, Ni 28, Cu 29 & Zn 30)

Good Luck

Examiners: Prof. Dr: Kamal Elbaradie, Prof. Dr: Ekhlas Abd Elhay





Chemistry Department Faculty of Science Tanta University

# **Final Examination**

For 3<sup>rd</sup> grade students (Double Major Students) May 2017, Spring semester Course title:

**Natural Products** 

Course Code: CH3250

Exam time: 2 hours

Assessment Mark: 100 M

# Answer ALLthe following questions

# Q1. Discuss briefly the following. (Total 28 marks, each point 7 marks)

- 1- Properties and uses of Ephedrine.
- 2- One synthetic method of Piperine. (use chemical equations ONLY to describe your answer)
- 3- Synthesis of Caffeine from Urea.(use chemical equations ONLY to describe your answer)
- 4- Synthesis of Cocaine. (use chemical equations ONLY to describe your answer)

# Q2. Write shortly about the following.

# (Total 28 marks, each point 7 marks)

- 1- Clinical significance, antioxidant activity, and synthesis of Vitamin E.
- 2- Synthesis of both Vitamin K<sub>1</sub> and Vitamin K<sub>3</sub>(use chemical equations ONLY to describe your answer).
- 3- The different chemical structures and the synthesis of Vitamin B<sub>6</sub>.
- 4- Synthesis of Vitamin C (Ascorbic acid).
- Q3. Answer the following points.

(Total <u>24 marks</u>)

- a- Mark the following statements as <u>True or False</u>, <u>correcting</u> the false statement. (10 marks, each point 2 marks)
- 1- Myrcene is cyclicmonoterpenoid with three conjugated double bonds, forming an adduct.
- 2- Formaldehyde, acetone, and ketodialdehyde arethe products of ozonolysis of ∞-Terpineol.
- 3- Hydration of Geraniol in the presence of sulphoric acid give Citral.
- 4- Geraniol is an optically active cyclic monoterpenoidalcohol.
- 5- The reduction of Citral in the presence of sodium ethoxide give Geraniol.
- b- Convert the following by using chemical equations. (14 marks, each point 7 marks)
  - 1- Pentane 1,3,5-tricarboxylic acid to Limonene
  - 2- P-Toluic acid to ∞-Terpineol.

| Q4. | Complete the following | equations by | chemical  | structures, | naming | your | answer. |
|-----|------------------------|--------------|-----------|-------------|--------|------|---------|
|     |                        | (Total 20 ma | rks, each | point 5 mai | rks)   |      |         |

| 1- | Cholesterol A (1) dehydration (ii) reduction                 |                           |
|----|--------------------------------------------------------------|---------------------------|
| 2- | Cholestanol AOxidation / CrO <sub>3</sub>                    | Grign <b>B</b> d reagent  |
|    |                                                              | / methyl-magnesium iodide |
| 3- | Cholesteryl acetate A Complete Oxidation by Chromium trioxid | e                         |
| 4- | Cholest-4-en-3-one ABP otassium permang                      | ganate Reduction          |

| Cholest-4-en-3-oneABPotassium permangan | ate           | Reduction  |  |
|-----------------------------------------|---------------|------------|--|
| / KMnO <sub>4</sub>                     |               | Zn-Hg /HCl |  |
|                                         | انتهت الأسئلة |            |  |

Good Luck

Examiners: Prof. Dr. Mohamed Reda Berber, Prof. Dr. Yehia Hafez

| 1     |                                                      |                          | Tanta University           | 53                  |  |  |
|-------|------------------------------------------------------|--------------------------|----------------------------|---------------------|--|--|
| CHA   | Faculty of Science                                   |                          |                            |                     |  |  |
|       | Department of Chemistry                              |                          |                            |                     |  |  |
|       | Final exam. for Juniors students of doubled branches |                          |                            |                     |  |  |
| 1969  | Course title:                                        | Molecular Photochemistry |                            | Course Code: CH3244 |  |  |
| Date: | May 30, 2017                                         | Term: second             | Total assessment Marks: 50 | Time allowed: 2 H   |  |  |

## Answer the following questions

1) Differentiate between each of the following:

(16 marks)

- a, El-Sayed's rule and Kasha's rule
- b. E- and P- types of delayed fluorescence
- c. 1,2 addition and 1,2-1,4 addition of photodimerization of olefinic compounds.
- d. Radiative natural and observed fluorescence lifetimes.
- 2) Draw each of the following:

(12 marks)

- a. Triplet-triplet mechanism of energy transfer action according to the Dexter mechanism.
- b. Possible transitions causing energy transfer processes in Biacety, Pyrene and Naphtalene system.
- c. Singlet-singlet mechanism of energy transfer action according to Förster mechanism.
- d. Jablonski Diagram for electronic transitions between ground and excited states.
- 3) Write down the following statements. Show whether each of the following statements is true or false, if false, please, write down the true. (14 marks)
- a. The energy gap value,  $\Delta E(T_1 \sim S_0)$  is a factor which determines the relative magnitudes of  $k_f$  and  $k_{isc}$   $(S_1 \sim T_1)$ .
- b. Each decay process represented by  $k_{\rm f}$ ,  $k_{\rm ic}$ ,  $k_{\rm r}$  and  $k_{\rm et}$  is bimolecular rate constant.
- c. Promotion of an electron to an antibonding molecular orbital upon excitation takes about (10<sup>-10</sup> –10<sup>-12</sup>s), which is very quick compared to the characteristic time for molecular vibrations (10<sup>-15</sup> s).
- d. The rate of fluorescence can be enhanced relative to the other processes by using heavy atoms.
- e. Excimers are dimers in the excited state. They are formed by collision between two excited molecules.
- Intersystem crossing (ISC) is an iso-energetic radiationless transition between two electronic states of same multiplicity.
- g. In Jablonski diagram, the triplet state( $\uparrow\downarrow$ ) is always of lower energy than the energy of the corresponding singlet state( $\uparrow\uparrow$ ).
- 4) Give short notes on the following:

(8 marks)

- a. Quantum yield of fluorescence and of phosphorescence,  $\Phi_{\mathrm{f}},\Phi_{\mathrm{p}}.$
- b. Wigner spin conservation rule.

### **Good Luck**

The examiners: 1. Prof. Dr. Samy el-Dally

2. Prof. Dr. Shakir T. Abdel-Halim

# Tanta University **Faculty of Science**

Department of Chemistry

Final exam. for Juniors students of doubled branches Course title:

Molecular Photochemistry Course Code: CH3244

Date:

May 30, 2017 Term: second

Total assessment Marks: 50

Time allowed: 2 H

### Answer the following questions

1) Differentiate between each of the following:

(16 marks)

- a. El-Sayed's rule and Kasha's rule
- b. E- and P- types of delayed fluorescence
- c. 1,2 addition and 1,2-1,4 addition of photodimerization of olefinic compounds.
- d. Radiative natural and observed fluorescence lifetimes.
- 2) Draw each of the following:

(12 marks)

- Triplet-triplet mechanism of energy transfer action according to the Dexter mechanism.
- b. Possible transitions causing energy transfer processes in Biacety, Pyrene and Naphtalene system.
- Singlet-singlet mechanism of energy transfer action according to Förster mechanism.
- d. Jablonski Diagram for electronic transitions between ground and excited states.
- 3) Write down the following statements. Show whether each of the following statements is true or false, (14 marks) if false, please, write down the true.
- a. The energy gap value,  $\Delta E(T_1 \sim So)$  is a factor which determines the relative magnitudes of  $k_f$  and  $k_{isc}$  $(S_1 \sim T_1)$ .
- b. Each decay process represented by k<sub>f</sub>, k<sub>ic</sub>, k<sub>r</sub> and k<sub>et</sub> is bimolecular rate constant.
- c. Promotion of an electron to an antibonding molecular orbital upon excitation takes about (10<sup>-10</sup>-10<sup>-12</sup>s), which is very quick compared to the characteristic time for molecular vibrations (10<sup>-15</sup> s).
- d. The rate of fluorescence can be enhanced relative to the other processes by using heavy atoms.
- e. Excimers are dimers in the excited state. They are formed by collision between two excited molecules.
- f. Intersystem crossing (ISC) is an iso-energetic radiationless transition between two electronic states of same multiplicity.
- g. In Jablonski diagram, the triplet state(↑↓) is always of lower energy than the energy of the corresponding singlet state(↑↑).
- 4) Give short notes on the following:

(8 marks)

- a. Quantum yield of fluorescence and of phosphorescence,  $\Phi_f$ ,  $\Phi_n$ .
- b. Wigner spin conservation rule.

## **Good Luck**

The examiners: 1. Prof. Dr. Samy el-Dally

2. Prof. Dr. Shakir T. Abdel-Halim

| 1     |                                                      | AND THE PERSON NAMED IN COLUMN TO TH | Tanta University           |                     |  |  |
|-------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|--|--|
| N. A. | Faculty of Science                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |  |  |
|       | Department of Chemistry                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |  |  |
|       | Final exam. for Juniors students of doubled branches |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |  |  |
| 1969  | Course title:                                        | Molecular Photochemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Course Code: CH3244 |  |  |
| Date: | May 30, 2017                                         | Term: second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total assessment Marks: 50 | Time allowed: 2 H   |  |  |

#### Answer the following questions

1) Differentiate between each of the following:

(16 marks)

- a. El-Sayed's rule and Kasha's rule
- b. E- and P- types of delayed fluorescence
- c. 1,2 addition and 1,2-1,4 addition of photodimerization of olefinic compounds.
- d. Radiative natural and observed fluorescence lifetimes.
- 2) Draw each of the following:

(12 marks)

- a. Triplet-triplet mechanism of energy transfer action according to the Dexter mechanism.
- b. Possible transitions causing energy transfer processes in Biacety, Pyrene and Naphtalene system.
- c. Singlet-singlet mechanism of energy transfer action according to Förster mechanism.
- d. Jablonski Diagram for electronic transitions between ground and excited states.
- 3) Write down the following statements. Show whether each of the following statements is true or false, if false, please, write down the true. (14 marks)
- a. The energy gap value,  $\Delta E(T_1 \sim So)$  is a factor which determines the relative magnitudes of  $k_f$  and  $k_{isc}$  ( $S_1 \sim T_1$ ).
- b. Each decay process represented by k<sub>f</sub>, k<sub>ic</sub>, k<sub>r</sub> and k<sub>et</sub> is bimolecular rate constant.
- c. Promotion of an electron to an antibonding molecular orbital upon excitation takes about (10<sup>-10</sup> –10<sup>-12</sup>s), which is very quick compared to the characteristic time for molecular vibrations (10<sup>-15</sup> s).
- d. The rate of fluorescence can be enhanced relative to the other processes by using heavy atoms.
- e. Excimers are dimers in the excited state. They are formed by collision between two excited molecules.
- f. Intersystem crossing (ISC) is an iso-energetic radiationless transition between two electronic states of same multiplicity.
- g. In Jablonski diagram, the triplet state( $\uparrow\downarrow$ ) is always of lower energy than the energy of the corresponding singlet state( $\uparrow\uparrow$ ).
- 4) Give short notes on the following:

(8 marks)

- a. Quantum yield of fluorescence and of phosphorescence,  $\Phi_f$ ,  $\Phi_p$ .
- b. Wigner spin conservation rule.

#### **Good Luck**

The examiners: 1. Prof. Dr. Samy el-Dally

2. Prof. Dr. Shakir T. Abdel-Halim

# Final Exam for 3<sup>rd</sup> year students (Dual specialization) (All specialties) Electrochem. II CH 3242. June 2017 Time allowed 2 hrs. Total Marks "100"

# Answer the following questions:

- 1- (a) What is the nature of electrode reaction?.
  - **(b)** Draw the I-E diagram of ideal polarized and ideal non-polarized electrodes Give example?
  - (c) Write down the potential-current relationship for the redox reaction

$$O + n\bar{e} \longrightarrow R$$

When both O and R initially present.

(20 Marks)

- 2- (a) What are the variables affecting the rate of electrode reactions?
  - (b) Give an example of coupled chemical reaction.
  - (c) Mention some methods used for measuring corrosion rate.

(20 Marks)

- 3- (a) Discuss the mechanism of O<sub>2</sub>-reduction and methanol oxidation at metal electrode surfaces.
  - (b) What are the methods applied for corrosion protection of metals and alloys?
  - (c) Give the diagnostic tests for reversible cyclic voltammograms.

(20 Marks)

- 4- (a) Explain the mechanism of Cu<sup>2+</sup> ion reduction process in aqueous sulphate solution.
  - **(b)** Mention the principles of DC-polarographic analysis in relation to the ILKOVIC equation.
  - (c) What are the different methods of mass transport?

(20 Marks)

- 5- (a) Write down the Butler-Volmer equation and the Tafel equations. Show the log I vs η plot.
  - (b) Explain briefly the energy level diagram of the redox process:  $A + \bar{e} \rightleftharpoons A$ .
  - (c) Calculate the current value at 0.50 V for the reaction:

 $Cu_{aq}^{2+} + 2\bar{e} \longrightarrow Cu_{(s)}$ 

 $(E^{\circ} = +0.34 \text{ V})$  at 298 K when the bulk concentration of  $Cu^{2+}$  ion is  $10^{-4}$  mol  $L^{-1}$  and the limiting current density is  $10^{-2}$  A cm<sup>-2</sup>. (20 Marks)

# **Best Wishes**

Prof. Dr. Mohamed Abd Elmoteleb

# Final Exam for 3<sup>rd</sup> year students (Dual specialization) (All specialties) Electrochem. II CH 3242. June 2017 Time allowed 2 hrs. Total Marks "100"

# Answer the following questions:

- 1- (a) What is the nature of electrode reaction?.
  - (b) Draw the I-E diagram of ideal polarized and ideal non-polarized electrodes Give example?
  - (c) Write down the potential-current relationship for the redox reaction

$$O + n\bar{e} \rightleftharpoons R$$

When both O and R initially present.

(20 Marks)

- 2- (a) What are the variables affecting the rate of electrode reactions?
  - (b) Give an example of coupled chemical reaction.
  - (c) Mention some methods used for measuring corrosion rate.

(20 Marks)

- 3- (a) Discuss the mechanism of O<sub>2</sub>-reduction and methanol oxidation at metal electrode surfaces.
  - (b) What are the methods applied for corrosion protection of metals and alloys?
  - (c) Give the diagnostic tests for reversible cyclic voltammograms.

(20 Marks)

- 4- (a) Explain the mechanism of Cu<sup>2+</sup> ion reduction process in aqueous sulphate solution.
  - (b) Mention the principles of DC-polarographic analysis in relation to the ILKOVIC
  - (c) What are the different methods of mass transport?

(20 Marks)

- 5- (a) Write down the Butler-Volmer equation and the Tafel equations. Show the log I vs η plot.
  - (b) Explain briefly the energy level diagram of the redox process:  $A + \bar{e} \rightleftharpoons A^{-}$ .
  - (c) Calculate the current value at 0.50 V for the reaction:

$$Cu_{aq}^{2+} + 2\bar{e} \longrightarrow Cu_{(s)}$$

 $Cu_{aq}^{2+} + 2\bar{e} \longrightarrow Cu_{(s)}$ (E° = +0.34 V) at 298 K when the bulk concentration of  $Cu^{2+}$  ion is  $10^{-4}$  mol  $L^{-1}$  and the limiting current density is  $10^{-2}$  A cm<sup>-2</sup>. (20 Marks)

# **Best Wishes**

Prof. Dr. Mohamed Abd Elmoteleb

# Final Exam for 3<sup>rd</sup> year students (Dual specialization) (All specialties) Electrochem. II CH 3242. June 2017 Time allowed 2 hrs. Total Marks "100"

# Answer the following questions:

- 1- (a) What is the nature of electrode reaction?.
  - **(b)** Draw the I-E diagram of ideal polarized and ideal non-polarized electrodes Give example?
  - (c) Write down the potential-current relationship for the redox reaction

$$O + n\bar{e} \rightleftharpoons R$$
When both O and R initially present. (20 Marks)

- 2- (a) What are the variables affecting the rate of electrode reactions?
  - (b) Give an example of coupled chemical reaction.
  - (c) Mention some methods used for measuring corrosion rate.

(20 Marks)

- 3- (a) Discuss the mechanism of O<sub>2</sub>-reduction and methanol oxidation at metal electrode surfaces.
  - (b) What are the methods applied for corrosion protection of metals and alloys?
  - (c) Give the diagnostic tests for reversible cyclic voltammograms.

(20 Marks)

- 4- (a) Explain the mechanism of Cu<sup>2+</sup> ion reduction process in aqueous sulphate solution.
  - (b) Mention the principles of DC-polarographic analysis in relation to the ILKOVIC equation.
  - (c) What are the different methods of mass transport?

(20 Marks)

- 5- (a) Write down the Butler-Volmer equation and the Tafel equations. Show the  $\log I vs \eta$  plot.
  - (b) Explain briefly the energy level diagram of the redox process:  $A + \bar{e} \implies A^-$ .
  - (c) Calculate the current value at 0.50 V for the reaction:

$$Cu_{aq}^{2+} + 2\bar{e} \longrightarrow Cu_{(s)}$$
  
(E° = +0.34 V) at 298 K when the bulk concentration of  $Cu^{2+}$  ion is  $10^{-4}$  mol  $L^{-1}$  and the limiting current density is  $10^{-2}$  A cm<sup>-2</sup>. (20 Marks)

# **Best Wishes**

Prof. Dr. Mohamed Abd Elmoteleb

#### Answer the following duestions:

- 1- (a) What is the nature of electrode reaction?.
  - (b) Draw the I-E diagram of ideal polarized and ideal non-polarized electrodes Give example?
  - (c) Write down the potential-current relationship for the redox reaction

$$O + n\bar{e} \longrightarrow R$$

When both O and R initially present.

(20 Marks)

- 2- (a) What are the variables affecting the rate of electrode reactions?
  - (b) Give an example of coupled chemical reaction.
  - (c) Mention some methods used for measuring corrosion rate.

(20 Marks)

- 3- (a) Discuss the mechanism of O<sub>2</sub>- reduction and methanol oxidation at metal electrode surfaces.
  - (b) What are the methods applied for corrosion protection of metals and alloys?
  - (c) Give the diagnostic tests for reversible cyclic voltammograms.

(20 Marks)

- 4- (a) Explain the mechanism of Cu<sup>2+</sup> ion reduction process in aqueous sulphate solution.
  - **(b)** Mention the principles of DC-polarographic analysis in relation to the ILKOVIC equation.
  - (c) What are the different methods of mass transport?

(20 Marks)

- 5- (a) Write down the Butler-Volmer equation and the Tafel equations. Show the log I vs  $\eta$  plot.
  - (b) Explain briefly the energy level diagram of the redox process:  $A + \bar{e} \rightleftharpoons A$ .
  - (c) Calculate the current value at 0.50 V for the reaction:

$$Cu_{aq}^{2+} + 2\bar{e} \longrightarrow Cu_{(s)}$$

 $(E^{\circ} = + 0.34 \text{ V})$  at 298 K when the bulk concentration of  $Cu^{2+}$  ion is  $10^{-4}$  mol  $L^{-1}$  and the limiting current density is  $10^{-2}$  A cm<sup>-2</sup>. (20 Marks)

# **Best Wishes**

Prof. Dr. Mohamed Abd Elmoteleb





# TANTA UNIVERSITY BY PROJECT OF THE SOURCE OF SCIENCE

DEPARTMENT OF CHEMISTRY

| The last | Final Examination of for third year students (Double major) |                      |                             |                       |  |  |
|----------|-------------------------------------------------------------|----------------------|-----------------------------|-----------------------|--|--|
| 1969     | COURSE TITLE                                                | Organic Spectroscopy |                             | COURSE CODE: CH3248   |  |  |
| DATE:    | JUN. 2017                                                   | TERM: SECOND         | TOTAL ASSESSMENT MARKS: 100 | TIME ALLOWED: 2 HOURS |  |  |

Answer the following questions:

(100 marks) (Each question 20 marks)

1] a) Discuss the chemical shift of hydrogen attached directly to a  $\Pi$ - bonded carbon and give the relative order of downfield shift of:

Acetylenic, vinylic, aldehydic and aryl hydrogen compared to alkyl hydrogens.

- b) Is the  $\delta$  value of a given kind of hydrogen proton a constant value? Find the  $\delta$  value and the observed shift from TMS in HZ of a signal in a 100- MHZ instrument? That is 162 HZ in a 60-MHZ instrument.
- 2] a) Draw the <sup>1</sup>HNMR spectra with multiplicity, peak accounting and showing relative chemical shifts for the following structures:

i) p- CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>-CH (CH<sub>3</sub>)<sub>2</sub>

ii) C<sub>6</sub>H<sub>5</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>Cl

iii) o-CH<sub>3</sub>-O-C<sub>6</sub>H<sub>4</sub>-COOH

iv)  $CH \equiv C-CH_2-O-CH_3$ 

- b) Use <sup>1</sup>HNMR spectroscopy to distinguish between the following geometric isomers:
- i) Cis -stilbene and trans-stilbene.

ii) 
$$C = C CH_3$$
 and  $C = CCH_3$ 

- 3] a) 4-Heptanone shows two important characteristic peaks in its mass spectrum due to ions at m/e = 86 and m/e = 58. Explain the fragmentation pattern of the compound.
- b) How do you explain that m/e = 57 and m/e = 44 ions is formed in the mass spectrum of pentanal.
- c) Give the typical fragmentation pattern in n-propyl benzene.
- 4] Explain the following by using the mentioned spectroscopic methods:
- a) o-Nitroacetanilide is deep yellow but the p- nitroacetanilide is yellow (UV & IR).
- b) The ketonic and enolic forms of ethyl benzoyl acetate (UV, IR and HNMR).

- c) Benzamide and acetamide (IR & HNMR).
- d) How will you distinguish between benzaldehyde and cinnamaldehyde (UV, IR and <sup>1</sup>HNMR).
- e) The effect of solvent on the absorption spectro of propanal and propanone (UV & IR).
- f) How could you distinguish between the following compounds; propanoic acid, propanoic unhydride and propanamide.
- 5] An organic compound with molecular formula C<sub>4</sub>H<sub>8</sub>O, having the following spectroscopic data:

UV: λ<sub>max</sub> 276(nm), ε 43 (n-hexane)

 $\lambda_{\text{max}}$  242(nm),  $\varepsilon$  37 (ethyl alcohol)

IR: υ in cm<sup>-1</sup> 1715 (s) and 2988(m) (solid phase).

<sup>1</sup>HNMR:  $\tau$  (tau) values in CDCl<sub>3</sub> and TMS as standard reference 7.52 (q), 7.88(s), 8.93(t), in the ratio 3:3:2 (J= 7.1 HZ).

Mass data:  $M^+=72$  (61 %); m/e=57 (100%); m/e=29 (41%) and a broad peak at m/e=14.75 (2.1%).

Find out the structure of the above compound, and explain all the given spectroscopic data.

#### Good Luck

public a griss saidiffic

Prof. Dr. Mohamed A. El-Borai & Ass. Prof. Dr. Sahar El-khalafv

matikager 1966 – a. Ariq orbital calabilari, apairre balba mekalejiden jedi.

And to top or one or the end unformal in the fragments of a protect of the capture of the provided in the capture of the end of the

| AGA 1          | TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF CHEMISTRY  FINAL EXAM FOR THIRD YEAR SPECIAL CHEMISTRY STUDENTS |              |                            |                      |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|----------------------|--|--|
|                |                                                                                                                     |              |                            |                      |  |  |
| 1969           | COURSE TITLE:                                                                                                       | SOLI         | ID STATE CHEMISTRY         | COURSE CODE: CH 3208 |  |  |
| DATE:28-5-2017 |                                                                                                                     | TERM: SECOND | TOTAL ASSESSMENT MARKS: 50 | TIME:2 HOURS         |  |  |

# Answer the following questions:

# Question 1 (8 marks)

The room temperature polymorph of iron exists in the bcc unit cell. Given its density as 7.86 g/cm<sup>3</sup>, then calculate the radius (r) of an iron atom in this crystal. The atomic mass of iron is 56 g/mol and Avogadro's number  $N = 6.02 \times 10^{23} \text{mol}^{-1}$ . [Hint for bcc,  $(4r)^2 = 3a^2$ ].

Above 910°C, iron exists in fcc unit cell. Using the above data, calculate also the density of this high temperature form. Answer also the following questions:

- i- Give the names of the bcc and fcc forms.
- ii- Which form has the higher density?
- iii- Write the balanced chemical equation for Haber reaction in which Fe is used as a catalyst.
- iv- Which plane of iron has the highest catalytic action. Using a cubic unit cell, draw this plane.

# Question 2 (8 marks)

Using tables, compare each pair of the following terms:

- a- Amorphous and crystalline materials.
- b- Intrinsic and extrinsic semiconductors.
- c- Martensitic and non-martensitic phase transformation.
- d-Hygroscopic and deliquescent materials

### Question 3 (16 marks; 2 marks per point)

Draw and carefully label each of the following:

- (a) The phase diagram of the cationic surfactant cetyl- trimethylammonium bromide (CTAB) in water showing the hexagonal, cubic and lamellar liquid crystal phases.
- (b) The chemical structure of montmorillonite clay
- (c) Reactivity of different polymorphs of cinnamic acid.
- (d) Energy bands, electronic and chemical processes occurring in TiO<sub>2</sub> nanoparticles upon use as photo-catalysts in the mineralization of industrial waste water.
- (e) The effect of light on different crystal forms of trans cinnamic acid crystals illustrating the topochemical postulate.
- (f) Energy diagram of photovoltaic solar cells based on p-n junction.
- (g) Energy diagram of semiconductor laser and light emitting diodes (LED) based on p-n junction.
- (h) Different types of liquid crystals.

See back page أنظر خلف الصفحة

Question 4 (6 marks; 2 marks per point)

Discuss briefly each of the following (3 marks each):

(a) Application of nanomaterials in DNA sequencing study

- (b) Application of polymerized crystalline colloidal arrays (PCCA) in medical sensing of sugar and biomarkers.
- (d) Point defects: their types, effect on stress-strain curves and explanation of color centers.

Question 5 (6 marks; 1 mark per point)

In not more than two lines, define each of the following terms (4 marks):

(a) A plasmon (b) Fermi level (c) An exciton (d) Quantum dots (QDs) (e) The fracking process in shale oil extraction (f) Exciton Bohr radius a<sub>ex</sub>.

Question 6 (6 marks; 1 mark per point)

In not more than two lines, give reason for each of the following (5 marks):

- (a) In lyophilization, dilute solutions are usually applied
- (b) Non-fluorescent ZnS becomes fluorescent upon heating
- (c) In zone refining, the middle part of the tube is the purist part
- (d) Swelling occurs in clays but not in zeolites
- (e) Quantum dots are not common in organic compounds
- (f) A polycrystalline Cd sample is harder than Cd single crystal

**End of Exam** 

Examiners: Prof. Dr. El-Zeiny Mousa Ebeid and Dr. Wael Amer