المستوى الثالث كيمياء/ميكرو #### TANTA UNIVERSITY **FACULTY OF SCIENCE** DEPARTMENT OF CHEMISTRY FINAL EXAMINATION FOR ALL DOUBLE MAJOR THIRD LEVEL STUDENTS COURSE TITLE: (Coordination Chemistry) COURSE CODE: CH3246 DATE: 1,JUNE 2017 TERM: SECOND TOTAL ASSESSMENT MARKS TIME ALLOWED: 2 HOURS ### Answer the following Questions: - 1-) For each complex define the following: (Total marks 20) - 1-Name 2- The type of isomerism 3- The type of hybridization 4- Calculate the magnetic moment I-) $[Mn (H_2O)_6]Cl_2$ (5marks) II-) K_2 [Zn(CN)₄] (5marks) III-) $K_2[Ni(NO_2)_4]$ (5marks) IV-) Na₃[Co Cl₆] (5marks) - 2-)A -)Iron ion forms an inner diamagnetic complex ion containing the cyano ligand. Derive the formulae of the complex. (4marks) - B-) Discuss the effect of central metal ion and its charge on Δ_0 value. (4marks) - C-) Manganese (II) ion forms inner complex ion with cyano ligands. Calculate the magnetic moment value of the complex. (4marks) - D-) Discuss the hydration isomerism with example. (3marks) (Total marks 15) - 3-) A-) Wite full account on Jahn-Teller effect with examples (5marks) - B-) What is the formula of the following complex: (2marks) Tetrammine copper (II) hexachloro copperate (II) - C-) For the two complexes: 1-) Hexammine cobalt(III) chloride (8marks) - 2-)Potassium hexacyano ferrate (II) - a-)Draw the d- orbital splitting indicate the number of electrons in t_{2g} and e_g - b-) Calculate the CFSE value and magnetic moment for each complex. (Total marks 15) Note: (Atomic number for Mn 25, Fe 26, Co 27, Ni 28, Cu 29 & Zn 30) Good Luck **Examiners:** Prof. Dr: Kamal Elbaradie, Prof. Dr: Ekhlas Abd Elhay #### TANTA UNIVERSITY **FACULTY OF SCIENCE** DEPARTMENT OF BOTANY EXAMINATION FOR (3 RD YEAR) STUDENTS OF SPECIAL MICO COURSE TITLE: APPLIED MICROBIOLOGY COURSE CODE: MB 3202 TOTAL ASSESSMENT MARKS: 100 DATE: 6/6/2017 TERM: SECOND TIME ALLOWED: 2 H | | 0.020 | 121 1001 | 2 | 114 | | |--------|-------|----------|-------|----------|-----| | Answer | the | foll | owing | question | ns: | #### 1- Write on the following: (30 Marks) a) Septic shock (With drawing). b) Classification of herbicide. c) Characters of perfect biological weapons. d) Method used to obtain solid wastes composting. 2- Complete the following: (25 Marks) d) The successful biodegradation to remove of petroleum hydrocarbons from sea depend on 3- Choose the correct answer: (25 Marks) a) Chedder ripened period about: 1- 2-3 months. 2-2-16 months. 3-2-3 days. b) Bacterial strain detoxify herbicide is: 1- Flavobacterium. 2- Pseudo monas. 3- Both. c) Chlore used for disinfecting the drinking water: 3-Both. 1- Inexpensive method. 2- Removing ammonia. d) The non linear ABS resistance to biodegradation causing: - 1- Block of enzymes of micro organisms. - 2- Broken by micro organisms. - 3- Need genetic engineering process. - e) Shiglla sp. Produce exotoxin which act on: - - 1- ADP ribosylate. 2- Cleaves r-RNA of host cell. - 3- ADP ribosylate effect on CAMP. #### 4- Put true or false & correct the false: (20 Marks) - a) Membrane distrupting toxins are called cholesterol. - b) Cow milk contain high content of caproic, caprylic & capric acid. - c) Adjuvants help in production D-cell to form cytokines. - d) Super antigen an common type of bacterial toxin. - e) Starter M.O give milk texture and flavor. | EXAMINERS | DR. SAMIA SHABANA. | DR. WAGIH EL-SHOUNY | |-----------|--------------------|---------------------| | | TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY | | | | | | | |-------|---|-----------------------------|--------------------------|--|--|--|--| | | INORGANIC CHEMISTRY | | | | | | | | 1969 | | Coordination Chemistry | COURSE CODE:
CH 3210 | | | | | | DATE: | 4 JUN , 2017 | TOTAL ASSESSMENT MARKS: 150 | TIME ALLOWED: 2
HOURS | | | | | #### Answer the following Questions a-Pt(IV) ion form an ionic octahedral complex (A) containing 5H₂O molecules, bromide and sulphate ions. This complex reacts with BaCl₂ and give complex (B) and white precipitate. What are the formulae of complexes A and B (10 MARKS) - b- Draw the splitting of d^5 and d^7 of octahedral complex (10 MARKS) - c- For complex $K_3[Mn(CN)_6]$, $\mu = 2.82$ BM . Define the type of complex (Mn 25). (10 MARKS) - II) a- Define the ambidentate ligands (6 MARKS) - b- What are the formula of the following complexes: (9 MARKS) - 1-μ- hydroxo-bis {penta-amine nickel(II) } bromide. - 2-Tetra amine copper(II) hexa-chloro copperate(III). - 3- Dinitro Tetra amine manganese (III) ion - c-Nickel ion forms diamagnetic complex ion with cyano ligands (Ni 28) Derive the formula and the geometry of the complex. (15 MARKS) - III) For Fe ²⁺ the electron pairing energy (P) is 210 KJ/mol. The values of Δ_0 for the complexes [Fe(H₂O)₆]Cl₂ and K₄[Fe(CN)₆] are 120 and 390 KJ/mol.,respectively. i-What is the name of each complex? (4 MARKS) - ii- Calculate the CFSE for the outer complex (Fe=26). (13 MARKS) - iii-Calculate the magnetic moment value for the inner complex. (13 MARKS) - IV) For the complex Di Nitrito tetra aqua iron(III) sulphate - 1- What are: a) Formula b) Isomers c) types of Isomerism (25 Degree) - 2- Calculate the EAN (Fe 26) (5 MARKS) - V) Discuss the following: - a-The important uses of CFSE values. (15 MARKS) - b- The factors affecting the value of Δ_0 . Give examples. (15 MARKS) #### **Examiners** Prof. Dr. Mohamed Gaber Abu-Elazm Prof. Dr. Kamal El-Baradie Answer the following questions: (100 marks) (Each question 20 marks) 1] a) Discuss the chemical shift of hydrogen attached directly to a Π - bonded carbon and give the relative order of downfield shift of: Acetylenic, vinylic, aldehydic and aryl hydrogen compared to alkyl hydrogens. - b) Is the δ value of a given kind of hydrogen proton a constant value? Find the δ value and the observed shift from TMS in HZ of a signal in a 100- MHZ instrument? That is 162 HZ in a 60-MHZ instrument. - 2] a) Draw the ¹HNMR spectra with multiplicity, peak accounting and showing relative chemical shifts for the following structures: i) p- CH₃-C₆H₄-CH (CH₃)₂ ii) C₆H₅-O-CH₂-CH₂Cl iii) o-CH₃-O-C₆H₄-COOH iv) $CH \equiv C-CH_2-O-CH_3$ - b) Use ¹HNMR spectroscopy to distinguish between the following geometric isomers: - i) Cis -stilbene and trans-stilbene. ii) $$\begin{array}{c} H \\ C = C \\ H \end{array}$$ and $\begin{array}{c} Br \\ C = C \\ H \end{array}$ - 3] a) 4-Heptanone shows two important characteristic peaks in its mass spectrum due to ions at m/e = 86 and m/e = 58. Explain the fragmentation pattern of the compound. - b) How do you explain that m/e = 57 and m/e = 44 ions is formed in the mass spectrum of pentanal. - c) Give the typical fragmentation pattern in n-propyl benzene. - 4] Explain the following by using the mentioned spectroscopic methods: - a) o-Nitroacetanilide is deep yellow but the p- nitroacetanilide is yellow (UV & IR). - b) The ketonic and enolic forms of ethyl benzoyl acetate (UV, IR and ¹HNMR). - c) Benzamide and acetamide (IR & HNMR). - d) How will you distinguish between benzaldehyde and cinnamaldehyde (UV, IR and ¹HNMR). - e) The effect of solvent on the absorption spectro of propanal and propanone (UV & IR). - f) How could you distinguish between the following compounds; propanoic acid, propanoic unhydride and propanamide. - 5] An organic compound with molecular formula C₄H₈O, having the following spectroscopic data: UV: λ_{max} 276(nm), ϵ 43 (n-hexane) λ_{max} 242(nm), ϵ 37 (ethyl alcohol) IR: v in cm⁻¹ 1715 (s) and 2988(m) (solid phase). ¹HNMR: τ (tau) values in CDCl₃ and TMS as standard reference 7.52 (q), 7.88(s), 8.93(t), in the ratio 3:3:2 (J= 7.1 HZ). Mass data: $M^+ = 72$ (61 %); m/e = 57 (100%); m/e = 29 (41%) and a broad peak at m/e = 14.75 (2.1%). Find out the structure of the above compound, and explain all the given spectroscopic data. #### Good Luck Prof. Dr. Mohamed A. El-Borai & Ass. Prof. Dr. Sahar El-khalafy # TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY Final Examination of for third year students (Double major) COURSE TITLE Organic Spectroscopy COURSE CODE: CH3248 DATE: JUN. 2017 TERM: SECOND TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS Answer the following questions: (100 marks) (Each question 20 marks) 1] a) Discuss the chemical shift of hydrogen attached directly to a Π- bonded carbon and give the relative order of downfield shift of: Acetylenic, vinylic, aldehydic and aryl hydrogen compared to alkyl hydrogens. - b) Is the δ value of a given kind of hydrogen proton a constant value? Find the δ value and the observed shift from TMS in HZ of a signal in a 100- MHZ instrument? That is 162 HZ in a 60-MHZ instrument. - 2] a) Draw the ¹HNMR spectra with multiplicity, peak accounting and showing relative chemical shifts for the following structures: i) p- CH₃-C₆H₄-CH (CH₃)₂ ii) C₆H₅-O-CH₂-CH₂Cl iii) o-CH₃-O-C₆H₄-COOH iv) $CH \equiv C-CH_2-O-CH_3$ - b) Use ¹HNMR spectroscopy to distinguish between the following geometric isomers: - i) Cis -stilbene and trans-stilbene. - 3] a) 4-Heptanone shows two important characteristic peaks in its mass spectrum due to ions at m/e = 86 and m/e = 58. Explain the fragmentation pattern of the compound. - b) How do you explain that m/e = 57 and m/e = 44 ions is formed in the mass spectrum of pentanal. - c) Give the typical fragmentation pattern in *n*-propyl benzene. - 4] Explain the following by using the mentioned spectroscopic methods: - a) o-Nitroacetanilide is deep yellow but the p- nitroacetanilide is yellow (UV & IR). - b) The ketonic and enolic forms of ethyl benzoyl acetate (UV, IR and ¹HNMR). - c) Benzamide and acetamide (IR & HNMR). - d) How will you distinguish between benzaldehyde and cinnamaldehyde (UV, IR and ¹HNMR). - e) The effect of solvent on the absorption spectro of propanal and propanone (UV & IR). - f) How could you distinguish between the following compounds; propanoic acid, propanoic unhydride and propanamide. - 5] An organic compound with molecular formula C₄H₈O, having the following spectroscopic data: UV: λ_{max} 276(nm), ϵ 43 (n-hexane) λ_{max} 242(nm), ϵ 37 (ethyl alcohol) IR: v in cm⁻¹ 1715 (s) and 2988(m) (solid phase). ¹HNMR: τ (tau) values in CDCl₃ and TMS as standard reference 7.52 (q), 7.88(s), 8.93(t), in the ratio 3:3:2 (J= 7.1 HZ). Mass data: $M^+ = 72$ (61 %); m/e = 57 (100%); m/e = 29 (41%) and a broad peak at m/e = 14.75 (2.1%). Find out the structure of the above compound, and explain all the given spectroscopic data. #### Good Luck Prof. Dr. Mohamed A. El-Borai & Ass. Prof. Dr. Sahar El-khalafy 5,250 ## TANTA UNIVERSITY BY RESPONDENT SHOP SHOPE SHOPE (SEE FACULTY OF SCIENCE Final Examination of for third year students (Double major) DATE: JUN. 2017 TERM: SECOND TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS Answer the following questions: (100 marks) (Each question 20 marks) 1] a) Discuss the chemical shift of hydrogen attached directly to a Π- bonded carbon and give the relative order of downfield shift of: Acetylenic, vinylic, aldehydic and aryl hydrogen compared to alkyl hydrogens and property and the compared to alkyl hydrogens are comp - b) Is the δ value of a given kind of hydrogen proton a constant value? Find the δ value and the observed shift from TMS in HZ of a signal in a 100- MHZ instrument? That is 162 HZ in a 60-MHZ instrument. - 2] a) Draw the ¹HNMR spectra with multiplicity, peak accounting and showing relative chemical shifts for the following structures: i) p- CH₃-C₆H₄-CH (CH₃)₂ ii) C₆H₅-O-CH₂-CH₂CI iii) o-CH₃-O-C₆H₄-COOH iv) $CH \equiv C-CH_2-O-CH_3$ - b) Use ¹HNMR spectroscopy to distinguish between the following geometric isomers: - i) Cis -stilbene and trans-stilbene. ii) $$C = C CH_3$$ and $C = C CH_3$ - 3] a) 4-Heptanone shows two important characteristic peaks in its mass spectrum due to ions at m/e = 86 and m/e = 58. Explain the fragmentation pattern of the compound. - b) How do you explain that m/e = 57 and m/e = 44 ions is formed in the mass spectrum of pentanal. - c) Give the typical fragmentation pattern in n-propyl benzene. - 4] Explain the following by using the mentioned spectroscopic methods: - a) o-Nitroacetanilide is deep yellow but the p- nitroacetanilide is yellow (UV & IR). - b) The ketonic and enolic forms of ethyl benzoyl acetate (UV, IR and HNMR). - c) Benzamide and acetamide (IR & HNMR). - d) How will you distinguish between benzaldehyde and cinnamaldehyde (UV, IR and IHNMR). - e) The effect of solvent on the absorption spectro of propanal and propanone (UV & IR). - f) How could you distinguish between the following compounds; propanoic acid, propanoic unhydride and propanamide. - 5] An organic compound with molecular formula C₄H₈O, having the following spectroscopic data: UV: λ_{max} 276(nm), ϵ .43 (n-hexane) as resemble to the second state of secon λ_{max} 242(nm), ϵ 37 (ethyl alcohol) IR: υ in cm⁻¹ 1715 (s) and 2988(m) (solid phase). ¹HNMR: τ (tau) values in CDCl₃ and TMS as standard reference 7.52 (q), 7.88(s), 8.93(t), in the ratio 3:3:2 (J= 7.1 HZ). Mass data: $M^+ = 72$ (61 %); m/e = 57 (100%); m/e = 29 (41%) and a broad peak at m/e = 14.75 (2.1%). Find out the structure of the above compound, and explain all the given spectroscopic data. #### Good Luck and the second of the second Prof. Dr. Mohamed A. El-Borai & Ass. Prof. Dr. Sahar El-khalafy If a properties a summer to the compact of the continues and anamed and the continues and the continues and the continues and th