TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS EXAMINATION FOR SOPHOMORES (2ND LEVEL) STUDENTS OF BIOCHEMISTRY & CHEMISTRY/ BIOCHEMISTRY COURSE TITLE: BIOPHYSICS COURSE CODE:PH2292 DATE: 19-5-2018 TERM: SECOND TOTAL ASSESSMENT MARKS: 50 TIME ALLOWED: 2 HOURS #### ANSWER THE FOLLWING QUSTIONS: #### 1- Write on: (12 mark) - a) Radiations effects on living tissues, and - b) GM counters applications in medicine. #### 2- Explain: (12 mark) - a) Transitions of molecules in a nerve system, - b) Bioelectrical forces and an application. #### 3- Discuss: (12 mark) - a) An application of ultra=sound forces, - c) The effect of magnetic fields on blood cells, (14 mark) #### 4- Write on:- - (a) The applications of nuclear radiation in medicine. - b) The VISION theory. # والله ولى التوفيق | EXAMINERS: | Prof.Dr. G. FARAG | & | Prof. Dr. A. TAWFEK | | |-------------------|-------------------|---|---------------------|--| |-------------------|-------------------|---|---------------------|--| # **Answer the following questions:** Question [1]: [25Mark] # Write short notes about the following: (a)-Energy of A Hooke's Law System, (b)-Resilience ,(c)-Tensile Strength, (d)-Toughness. #### Question [2]: [25Mark] i-Explan the followhng: [15Mark] Twinning dislocation, Plastic Deformations in Polycrystalline Metals and Strain hardening. (ii)-Define: Ultimate tensile strength ,The yield strength, Homogeneous Strain, Biaxial stress and Schmid's Law. [10Marks] # Question [3]: [25Mark] (a)-Mention: Strain energy per unit volume- Relation between true stress and true strain, The critical resolved shear stress, Hall- Petch equation and Percent reduction in area. [15Mark] (b)-Deduce Strain Energy in Dislocations. [10Marks] # Question [4]: [25Mark] **1-**A 8.00-cm cube of gelatin has its upper surface displaced 2.00 cm by a tangential force0.600 N. What is shear modulus of this substance? **2-**Find the pressure necessary to change a volume of water by 2.0 percent. Express the pressure in terms of atmospheric pressure units 1 bar= 10^5 N/m². B= 3.2×10^9 N/m². **3-**A steel bar 8.00 m long and with rectangular cross section of 5.00 cm \times 2.50 cm supports a mass of 3000 kg. How much is the bar stretched? Where Y for steel is 20.0 x 10^{10} N/m². Examiner Dr. Samy El-Attar. Answer the following questions: 1. a. Define the following physical terms using units whenever possible: "Energy", "work done", "electrical energy", "mechanical energy", "power", "efficiency", "perfect black body", "Uranium critical mass", "electric current", and "binding energy of the nucleus". - b. Discuss the energy changes in the movement of the simple pendulum. [5 Marks] - 2. a. Compare between the two laws of thermodynamics. [10 Marks] b. Discuss the characteristics of electrical energy. [10 Marks] c. Prove that J = C V [5 Marks] - 3. a. Discuss the disadvantages of conventional energy resources. [5 Marks] - b. Explain the relation between the nuclear forces and the binding energy of the nucleus. [10 Marks] - c. Compare between the fission and fusion nuclear reactions. Give equations and comment on the resulting energy in both cases. [10 Marks] - 4. a. Draw a schematic diagram to describe the conversion of solar energy to thermal energy. [10 Marks] - b. Discuss two schematic diagrams to describe how to utilize wind energy and biomass. [10 Marks] - c. Discuss the necessity of "Energy Conservation" in order to develop our country. [5 Marks] #### TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS #### **EXAMINATION OF (LEVEL TWO) STUDENTS OF PHYSICS** | 1909 | COURSE TITLE: | Mathematical physics 2 | | COURSE CODE: PH 2264 | | |------|---------------|------------------------|----------------------------|-----------------------|--| | E: | 28/512018 | FINAL EXAM | TOTAL ASSESSMENT MARKS:100 | TIME ALLOWED: 2 HOURS | | #### Answer the following questions: # First question: (25 Marks) (i) By observe that y = x is a solution, solve the following $$y'' - [(x + 2)/x]y' + [(x + 2)/x^2]y = x e^x$$ (ii) Solve $y'' - y = e^{2x}$ # Second question: (25 Marks) Solve (i) $y//+3y/+2y = e^x - 3$ (ii) $\Gamma(1/4) \Gamma(3/4) = ??$ (iii) $\beta(x,y)$ at x=5, y=6 # Third question: - (25 Marks) Prove that, $$\Gamma(x+1)=x \Gamma(x)$$ Find, $$\int_0^1 x^7 (1-x)^8 dx \qquad 2 \int_0^{\pi/2} \sin^7(x) \cos^8(x) dx$$ # Fourth question: (25 marks) - (i) Write about Angular momentum operators - (ii) find, $x^2T'' + xT' + (x^2-1/9)T = 0$ | EXAMINERS | DR. Atef Elbendary | | | |-----------|------------------------|--|--| | | أطيب التمنيات بالتوفيق | | | | 486 | | TAN | TA UNIVERSITY- Faculty of Science -Depar | rtment of Phys | ics | |-------|--------------|--------------|------------------------------------------|----------------|-----------------------| | | | EXAM FOR LEV | EL TWO STUDENTS OF PHYSIC, BIOPHY | SIC AND MATE | RIAL SCIENCE | | 100.7 | COURSE TITLE | | lectromagnetism 2 | | COURSE CODE: PH2252 | | DATE: | 2-6- 2018 | TERM: SECOND | TOTAL ASSESSMENT MARKS: 10 | 0 | TIME ALLOWED: 2 HOURS | #### First Question: (30MARKS) - I) From the principal of conservation of charge deduce the integral form and the differential form of continuity equation. - II) Use the definition of electric dipole moment; deduce the relation between the flux density, field intensity and polarization inside dielectric material. - III) A solid conductor has a net charge density ρ_o at t=0.0, use Ohm's law and continuity equation to find the net charge density ρ_v after time (t). #### Second Question: (20MARKS) - I) Find the total current outward directed from a 1 meter cube with one corner at the origin and edges parallel to the coordinate axes if $J = 2x^2a_x + 2xy^3a_y + 2xya_z$ (A/m²). - II) Conducting cylinders at $\rho=2~cm$ and $\rho=8~cm$ in free space are held potentials of 60~mV and -30~mV respectively. - a) Find $V(\rho)$ - b) Find $E_{\rho}(\rho)$ - c) Find the surface on which V = 30mV. #### Third Question: (30MARKS) - Evaluate the closed line integral of H about the rectangular path $P_1(2,3,4)$ to $P_2(4,3,4)$ to $P_3(4,3,1)$ to $P_4(2,3,1)$ to $P_4(2,3,1)$ to P_1 , given $H = 3zax 2x^3az$ A/m. - II) Determine $(\nabla \times H)_y$ at the center of the area. - III) Evaluate both sides of Stocks' theorem. #### Fourth Question: (20MARKS) A solid conductor of circular cross section is made of a homogenous nonmagnetic material. If the radius a=1mm, the conductor axis lies on the z axis; and the total current in the az direction is 20A, find - (a) H_{φ} at $\rho = 0.5mm$; - (b) $B_{\varphi} \ at \ \rho = 1.2 \ mm;$ - (c) The total magnetic flux per unit length inside the conductor; - (d) The total magnetic flux outside the conductor. #### EXAMINER ## Tanta University Faculty of Science Physics Department Examination of Level 2 Physics and Biophysics Programs Course Title Analytical mechanics Date 16-5-2018 Course Code: PH2242 Second semester #### Question 1 (10 points): | Rewrite | theses | sentences. | Then | comp | lete | them: - | |------------------|---------|--------------|--------|--------|------|----------| | I I C AA I I F C | 1110303 | JULIEU ILUCA | 111011 | COLLID | 100 | CIICIII. | - a) A particle moving in a central field its and remain constant. - d) The moment of the momentum of a system of particles is equal to the totaland the moment of force of a system of particles is equal to the total - e) Hamilton's equations of motion consist of, whereas Lagrange's equations consist of #### Question 2(30 points): - a) Prove that the total linear momentum of a system of particles about the center of mass is zero. - b) A system consists of three particles $m_1=2$, $m_2=3$, $m_3=4$ with position and velocities victories as follows: $r_1=2i+4j$, $r_2=2j+k$, $r_3=5i$, $v_1=2i$, $v_2=2j$, $v_3=l+j+k$, Find the angular momentum of the system about the origin . #### Question 3 (30 points) - a) A particle moving in a central field describing a spiral orbit $r = r_0 e^{k\theta}$. Show that the force law is inverse cube and that θ varies logarithmically with time. - b) Prove that for a particle under the effect of a central force, the radius vector sweeps out equal areas in equal times . #### Question 4 (30points) - a) Set up the Lagrangian , the Hamiltonian, Lagrange's and Hamilton's equations of motion for the simple Atwood's Machine consists of two weights of mass m₁ and m₂ , connected by a light inextensible cord of length I which passes over a fixed frictionless non- rotating pully (neglect the mass of the pully) - b) If the Hamiltonian H is independent of time explicitly, prove that it is (a) a constant and is (b) equal to the total energy of the system. with my best wishes Prf. Salwa Saad Mohamed DATE: #### TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS EXAMINATION FOR SOPHOMORES (2ND LEVEL) STUDENTS OF BIOCHEMISTRY & CHEMISTRY/ BIOCHEMISTRY COURSE TITLE: BIOPHYSICS COURSE CODE:PH2292 19-5-2018 TERM: SECOND TOTAL ASSESSMENT TOTAL ASSESSMENT MARKS: 50 TIME ALLOWED: 2 HOURS #### ANSWER THE FOLLWING QUSTIONS: 1- Write on: (12 mark) - a) Radiations effects on living tissues, and - b) GM counters applications in medicine. 2- Explain: (12 mark) - a) Transitions of molecules in a nerve system, - b) Bioelectrical forces and an application. 3- Discuss: (12 mark) - a) An application of ultra=sound forces, - c) The effect of magnetic fields on blood cells, (14 mark) #### 4- Write on:- - (a) The applications of nuclear radiation in medicine. - b) The VISION theory. # والله ولى التوفيق EXAMINERS: Prof.Dr. G. FARAG 8 Prof. Dr. A. TAWFEK # TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS SECOND YEAR (PHYSICS & MATERIAL SCIENCE) COURSE TITLE: تيار متر دد COURSE CODE: PH2282 MS2242 DATE: 6-6-2018 TERM: SECOND TOTAL ASSESSMENT MARKS:100 TIME ALLOWED: 2 HOURS #### Please Answer the Following: #### Question (1): (25 Marks) - (a) Define the effective current and derive its formula for a sinusoidal A.C. current. - (b) Plot a schematic of the oscilloscope and explain the factors affect the electrostatic deflection of the cathode ray tube. - (c) Calculate using the mathematical method the total impedance and the phase angle of R & C in series. #### Question (2): (25 Marks) - (a) Calculate the current across and the impedance of the giving circuit in fig (1). - (b) Find the equilibrium conditions of the given Bridge as shown in fig (2). (a) Using the diode approximations, calculate the load current, load voltage, load power, diode power, and total power: (b) Resonance ac circuit consists of a coil, a capacitor, and a resistance in series. The self-inductance of the coil is $100~\mu H$. The capacitance of the capacitor is $0.0001~\mu F$ and the resistance is 10 Ohm. If the applied voltage across the circuit is 0.1 volt, calculate the resonance frequency and the voltage across the coil and the capacitance. #### Question (4): (25 Marks) Write short notes on: - (a) Extrinsic and intrinsic semiconductors. - (b) Characteristic curve of a diode. - (c) Energy bands. - ⊙ ⊙ Best Wishes ⊙ ⊙ Dr. Mohammed Shihab #### TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS COURSE TITLE: ENERGY PHYSICS EXAM COURSE CODE: PH2232 ATE: J JUNE, 2018 TREM: SECONI TREM: SECOND TOTAL ASSESSMENT MARK: 100 TIME ALLOWED: 2 HOURS #### Answer the following questions: a. Define the following physical terms using units whenever possible: "Energy", "work done", "electrical energy", "mechanical energy", "power", "efficiency", "perfect black body", "Uranium critical mass", "electric current", and "binding energy of the nucleus". [20 Marks] - b. Discuss the energy changes in the movement of the simple pendulum. [5 Marks] - 2. a. Compare between the two laws of thermodynamics. [10 Marks] b. Discuss the characteristics of electrical energy. [10 Marks] c. Prove that J = C V [5 Marks] 3. a. Discuss the disadvantages of conventional energy resources. [5 Marks] - b. Explain the relation between the nuclear forces and the binding energy of the nucleus. [10 Marks] - c. Compare between the fission and fusion nuclear reactions. Give equations and comment on the resulting energy in both cases. - 4. a. Draw a schematic diagram to describe the conversion of solar energy to thermal energy. [10 Marks] - b. Discuss two schematic diagrams to describe how to utilize wind energy and biomass. [10 Marks] - c. Discuss the necessity of "Energy Conservation" in order to develop our country. [5 Marks] TANTA UNVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS COURSE TITLE: Physical optics TIME ALLOWD: 2 HOURS PH 2272 # DATE 26/5/ TERM: second TOTAL ASSESSMENT MARKS: 100 #### Please Answer THE Following Questions: - 1- a) Find the superposition of two wave train of same frequency and amplitude travelling in the same direction - b) Abiprism is placed at a distance of 5 cm in the front of a narrow slit illuminated by sodium light $\lambda = 5890$ A and the distance between The virtual sources is found to be 0.05 cm. Find The width of the fringes observed in an eyepiece placed at adistance of 75 cm from the biprism - 2 a) Describe Young's experiement and calculate The distance between two successive bright fringes - b) Light is incident normally on a grating 0.5 cm wide with 2500 lines . Find The angle of diffraction for the principle maximum of the two sodium lines in the first order spectrum $\lambda_1 = 5890~A$, $\lambda_2 = 5896~A$ Are The two line resolved? - 3- Disuss in detialis The fraunhofer diffraction produced by narrow slit illuminated by monochromatic light . obtain The positions of the Maxima and minima , and draw a digram for indicate the distribution of intensity of light in the diffraction patteren - 4- What are The common Methods used in producing polarization explain two of Them DATE: #### TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS ### **EXAMINATION OF (LEVEL TWO) STUDENTS OF PHYSICS** COURSE TITLE: Mathematical physics 2 COURSE CODE: PH 2264 28 12018 EXAM TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS #### Answer the following questions: # First question: (25 Marks) (i) By observe that y = x is a solution, solve the following $$y'' - [(x + 2)/x]y' + [(x + 2)/x^2]y = x e^x$$ (ii) Solve $y'' - y = e^{2x}$ # Second question: (25 Marks) Solve (i) $y//+3y/+2y = e^x - 3$ (ii) $\Gamma(1/4) \Gamma(3/4) = ??$ (iii) $\beta(x,y)$ at x=5, y=6 # Third question: - (25 Marks) Prove that, $$\Gamma(x+1)=x \Gamma(x)$$ Find, $$\int_0^1 x^7 (1-x)^8 dx = 2 \int_0^{\pi/2} \sin^7(x) \cos^8(x) dx$$ # Fourth question: (25 marks) - (i) Write about Angular momentum operators - (ii) find, $x^2T'' + xT' + (x^2-1/9)T = 0$ | EXAMINERS | DR. Atef Elbendary أطيب التمنيات بالتوفيق | | | |-----------|-------------------------------------------|--|--| | | | | | | | | TAN | TA UNIVERSITY- Faculty of Science -Dep | partment of Ph | ysics | |-------|--------------|--------------|----------------------------------------|----------------|-----------------------| | - 1 | | EXAM FOR LEV | EL TWO STUDENTS OF PHYSIC, BIOPH | IYSIC AND MA | TERIAL SCIENCE | | 1000 | COURSE TITLE | | Electromagnetism 2 | | COURSE CODE: PH2252 | | DATE: | 2-6- 2018 | TERM: SECOND | TOTAL ASSESSMENT MARKS: | 100 | TIME ALLOWED: 2 HOURS | #### First Question: (30MARKS) - I) From the principal of conservation of charge deduce the integral form and the differential form of continuity equation. - II) Use the definition of electric dipole moment; deduce the relation between the flux density, field intensity and polarization inside dielectric material. - III) A solid conductor has a net charge density ρ_o at t=0.0, use Ohm's law and continuity equation to find the net charge density ρ_v after time (t). #### Second Question: (20MARKS) - I) Find the total current outward directed from a 1 meter cube with one corner at the origin and edges parallel to the coordinate axes if $J = 2x^2a_x + 2xy^3a_y + 2xya_z$ (A/m²). - II) Conducting cylinders at $\rho=2~cm$ and $\rho=8~cm$ in free space are held potentials of 60~mV and -30~mV respectively. - a) Find $V(\rho)$ - b) Find $E_{\rho}(\rho)$ - c) Find the surface on which V = 30mV. #### **Third Question:** (30MARKS) - Evaluate the closed line integral of H about the rectangular path $P_1(2,3,4)$ to $P_2(4,3,4)$ to $P_3(4,3,1)$ to $P_4(2,3,1)$ to P_1 , given $H = 3zax 2x^3az$ A/m. - II) Determine $(\nabla \times H)_{\nu}$ at the center of the area. - III) Evaluate both sides of Stocks' theorem. #### Fourth Question: (20MARKS) A solid conductor of circular cross section is made of a homogenous nonmagnetic material. If the radius a=1mm, the conductor axis lies on the z axis; and the total current in the az direction is 20A, find - (a) H_{φ} at $\rho = 0.5mm$; - (b) $B_{\varphi} \ at \ \rho = 1.2 \ mm;$ - (c) The total magnetic flux per unit length inside the conductor; - (d) The total magnetic flux outside the conductor. # EXAMINER DR. REDA EL-SHATER اختبار نهاني فيزياء حديثة الفضل الثاني للعام الأكاديمي ٢٠١٨-٢٠١٨ ١٠٠ درجة الزمن ساعتان تاريخ الإمتحان ٢٠١٨/ ٢٠١٨ جامعة طنطا كلية العلوم قسم الفيزياء ثابت بلانك =34-6.62x10شحنة الالكترون =1.6x10 كولوم 9.1x10⁻³¹ Kg كتلة الالكترون ثابت كولوم 10⁹ K= 9x10 First question اختار الاحابة المناسبة من الاجابات الموجودة بعد كل عبارة من العبارات التالية: 1 - يتحرك جسم بسرعة 0.8 c بالاتجاه الموجب لمحور السينات و يتحرك جسم آخر بسرعة 0.7 c بنفس الاتجاه فان سرعة الجسم الاول بالنسبة للجسم الثاني 0.23c - 2 - 0.79c - 3 - 0.59c - 4 - 0.96c - 6 - 0.59c - 6 - 0.96c - 6 - 0.59c تطلق الكترونات ذات طاقة عظمى Emax=10ev هي $5.35 \times 10^{10} Hz$ - د - $3.55 \times 10^{15} Hz$ - د - $3.55 \times 10^{15} Hz$ - اصطدم فو تون طول موجته قبل التصادم $\lambda = 0.7$ A بإلكترون ساكن وطول موجته بعد 3.55 × 10 التصادم $\lambda^{-0.724}$ فان طاقة حركة الالكترون هي أ - 825ev ب - 288ev ب - 825ev ب - 825ev ب - 825ev أ- الأعظم لأشعة الشمس الأموجي الأعظم لأشعة الشمس الموجي الأعظم الأشعة الشمس الموجي الأعظم الموجي الأعظم الموجي الأعظم الموجي الموج $a_{2.9} \times 10^{-3} = b$ (ثابت فین $a_{2.9} \times 10^{-3}$ 8591 k - 2 1859 k - 5 9517 k - 9 5918 k - 1 5- اذا كانت طاقة الاشعة السينية هي $\Lambda_{\rm min}$ في E = 40.13kev فان اقل طول موجي $\Lambda_{\rm min}$ للطيف المستمر للأشعة السينية هو 0.9A - ع - 0.7A - ا 7 - سافر رائد فضاء بسرعة v= 0.99c نحو احد النجوم البعيدة وكان عمره ٢٠ سنة ثم عاد للأرض بعد أن أمضى حسب تقويمه الشخصي ٥ سنوات فان زمن رحلته بالنسبة لمراقب من على الأرض بالسنوات 13.6 - 25.4 ج – 25.4 د – 23.2 ٧ - سلك معدني مثبت في طائرة طوله ٥٠ مترا وسرعة الطائرة ١٠٠٠ كم / ساعة فان التغير في طول السلك بالنسبة لمراقب موجود على ارض المطار هو -0.521A - ع - 0.251A - ي - 0.521A - ي - 0.521A ٨- الزيادة في الطاقة الاشعاعية لجسم اسود اذا تضاعفت درجة حرارته T هي $11\sigma T^4 - 2$ $15\sigma T^4 - 2$ $4\sigma T^4 - 2$ $17\sigma T^4 - 1$ حيث ٥ هو ثابت ستيفان للاشعاع $^{-}$ عند سقوط اشعة ترددها $^{1.5}$ Hz على النحاس فان جهد الايقاف للالكترونات الضوئية الصادرة من النحاس هو $^{1.5}$ $^{1.13}$ $^{1.13}$ و ثابت بلانك $^{-}$ (6.52x10⁻³⁴ 0.53ev− ³ 3.15ev − ₹ 5.31 ev− · 1.53 ev− ¹ انظر الخلف # second question ١- اثبت أن طول المادة يتقلص عند التحرك بسرعة ٧ $\phi_0 = h \theta_0$ حيث $\phi_0 = h \theta_0$ تردد العتبة للإصدار الكهروضوئي و $\phi_0 = h \theta_0$ دالة الشغل . $\phi_0 = h \theta_0$ تنتج الميزونات الغير مستقرة في طبقات الجو العليا على بعد $\phi_0 = h \theta_0$ الاشعة الكونية مع الغلاف الجوي وسرعتها $\phi_0 = 0.998c$ وفترة حياتها هي $\phi_0 = 0.20$ ثانية . $\phi_0 = 0.998c$ باستخدام الميكانيكا الكلاسيكية والنسبية احسب المسافة التي تقطعها الميزونات قبل ان تنفكك $\phi_0 = 0.998c$ عند $\phi_0 = 0.998c$ تنفكك $\phi_0 = 0.998c$ الكلاسيكية عند $\phi_0 = 0.998c$ تنفكك $\phi_0 = 0.998c$ الكلاسيكية عند $\phi_0 = 0.998c$ #### Third question $v = c \left[\sqrt{1 - (\frac{E_0}{E})^2} \right]$ الصورة الجسم تكتب على الصورة حيث E الطاقة الكلية E الطاقة السكونية للجسم. 2- حصل كومبتون على المعادلة التالية من قوانين حفظ الطاقة وكمية التحرك لتفسير تفاعل الفوتون مع الالكترون $m_0\,c^2(\vartheta-\vartheta^1)=h\vartheta\vartheta^1$ = $m_0\,c^2(\vartheta-\vartheta^1)=h\vartheta\vartheta^1$ وروية الاستطارة φ . ٣- - ماهي العوامل التي يتوقف عليها معامل الامتصاص الفوتونات في المادة . # The fourth question 1- كيف اثبت دافيسون وجير مر عمليا وجود الخاصية الموجية للالكترونات 7-2 النيكل ذات 7-2 حيد حدوث حيود من الرتبة الأولى للالكترونات طاقة حركتها 7-2 من بلورة النيكل ذات المسافات البينية بين مستوياتها البلورية 7-2 الحسب الطول الموجي المصاحب باستخدام الخاصية الموجية والخاصية الجسيمية للإلكترون 7-2 الثبت انه عند فناء الالكترون بوزيترون ينتج زوج من الفوتونات لهما نفس الطاقة .