| Tanta Univ | ersity Faculty | Faculty of Science | | y Department | | |---------------|---------------------|--------------------|---------------|--------------------|------| | Final Exam | ination for Seniors | (fourth year | students) | Entomology Section | | | Course Title: | Bio | Biochemistry | | Course Code: 1 | 4104 | | Jan. 2013 | Term: First Sem | ester | Total Marks (| Time allowed: 3 | hrs. | Answer the following questions - 1)- "Many neurotransmitters biosynthesis depend on PLP". Write the biosynthetic pathway of noradrenalin. (6 marks) - 2)- In the following conversions write the corresponding enzymes and coenzymes: (6 marks) - i- Histidine into Histamine. ii- Pyruvate into Acetyl CoA. - iii- D-Glyceraldehyde-3-phosphate into 1,3-Diphospho glycerate. - 2)- Hepatic fructose can form 1,3- diphosphoglycerate. (4 marks) - 4)- "Active succinate is the precursor of heam biosynthesis" Explain its biosynthetic pathway from α -ketoacids. (6 marks) - 5)- Write the mechanism of oxidative deamination of L-alanine by amino acid oxidase. (4 marks) - 6)- Write equations of the non-oxidative pathway of HMS. (6 marks) - 7)- The biochemical pathway of the reaction of acetyl CoA in the presence of co-carboxylase. (5 marks) - 8)- Biosynthesis of Glycine. (5 marks) - 9)- Conversion of D-Glucose into D-Ribulose -5- phosphate. (5 marks) - 10)- Conversion of OAA into Fumaric acid. (5 marks) 11)- Write the β -degradative pathway of fatty acids. (4 marks) 12)- Explain the role of PLP in transamination reaction by GPT. (4 marks) Good Luck | Tanta Univ | ersity | Faculty of So | cience | Chemist | ry Department | sausugane estatic | |---------------|--------------|------------------|--------------|----------|-----------------|-------------------| | Reset Exan | nination for | r Seniors (fou | rth year stu | dents) | Botany Section | | | Course Title: | Instrum | ental Analysis a | and Biocher | nistry | Course Code: 14 | 4073 | | Jan 2013 | Term: Fi | rst Semester | Total ! | Marks 60 | Time allowed: 3 | hrs. | Sec. A Chromatography (20 Marks) 1) Give an account on the following: a- Ion exchange capacity. (5 Marks) b- Detectors for gas chromatography (5 Marks) 2) Discuss in details the applications of the following methods: a- Gel chromatography (5 Marks) b- HPLC chromatography. (5 Marks) # Sec. B Biochemistry (40 Marks) Answer the following:- 1)- In the following conversions write the corresponding enzymes and coenzymes: (3 marks) i- Histidine into Histamine. ii- Pyruvate into Acetyl CoA. iii- D-Glyceraldehyde-3-phosphate into 1,3-Diphospho glycerate. 2)- Write the biosynthetic pathway of Uridylic acid. (5 marks) 3)- Conversion of α -ketoisovaleric acid into Pantothenic acid. (3 marks) 4)- Conversion of hypoxanthine into AMP and GMP. (5 marks) 5)- Biosynthesis of Epenipherin. (4 marks) 6)- Uric acid from inosine. (4 marks) 7)- "L-alanine can form pyruvate and NH₃, Explain the mechanism. (4 marks) 8)- "Active succinate is the precursor of heam biosynthesis" Explain its biosynthetic pathway from α -ketoacids. (4 marks) 9)- The biochemical pathway of the reaction of acetyl CoA in the presence of co-carboxylase. (4 marks) 10)- Biosynthesis of Glycine. (4 marks) Good Luck # TANTA UNIVERSITY **FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY** EXAMINATION FOR FOURTH YEAR - STUDENTS OF ZOOLOGY COURSE TITLE: Analytical chemistry COURSE CODE: 14093 DATE: 5 - 1- 2013 JAN, 2013 TERM: FIRST TOTAL ASSESSMENT MARKS: TIME ALLOWED: 3 HOURS Section A Electrochemical methods of analysis (so Marks) Answer the following questions: - (10 Marks) 1) Define the following by an example or by an equation Modes of mass transfer, reference electrode, pH-electrode and Nernst equation - (10 Marks) 2) Compare the following techniques as analytical tools: Differential pulse polarography, and stripping voltammetry giving an application for each - 3) a) Give two examples for each of amperometric and conductumetric titrations (4 Marks) - b) Explain the electrolysis at controlled potential (2 Marks) - c) Write down the current- concentration relationship in the case of DC-polarography and (4 Marks) linear-sweep voltammetry Section B Chromatography (30 Marks) Answer the following questions | 1) | Write down on the applications of ion exchange chromatography | (5 Marks) | |----|---|--| | 2) | Mention the packing and sample application in column chromatography | (5 Marks) | | 3) | Write short notes on the following: a) Applications of high performance liquid chromatography (HPLC) b) Two applications of gel chromatography c) Properties of ion exchange chromatography d) Detectors of HPLC | (5 Marks)
(5 Marks)
(5 Marks)
(5 Marks) | | EXAMINERS | PROF. DR. MOHAMED EL-MORSI | PROF. DR. | YOUSSEF MOHARRAM | |---------------------|-------------------------------|-------------------------|------------------| | my tr tialliant for | THOU I DITE MOTORINED DE MOTO | 1 1 1 4 40 1 4 100 1 40 | | ## TANTA UNIVERSITY **FACULTY OF SCIENCE** DEPARTMENT OF CHEMISTRY EXAMINATION FOR SENIORS (B.SC) STUDENTS OF MICROBIOLOGY SECTION COURSE TITLE: **BIOCHEMISTRY** COURSE CODE: 14084 DATE: JANUARY, 2013 TERM: FIRST TOTAL ASSESSMENT MARKS: 60 TIME ALLOWED: 3 HOURS 5-1-2013 # Answer the following questions: # 1-Write a brief account on:- (4 points each) i-Thiamine improves mental attitudes , cysteine synthesis and hydrogen sulfide emission.. ii- Specific activity of pepsin ,trypsin and Chymotrypsin depends on pH interval in the stomach and duodenum respectively. iii- Alcoholism leads to fat accumulation in the liver . # 2- Write balanced equations for the following conversions:- (3 points each) ii- α-Ketoglutarate to OAA to initiate the gluconeogenesis. i- Valine to propionyl CoA. iii-Glucose to Glycerol-3-P through DHAP. iv- PRPP to Nicotinamide mono nucleotide... # 3- Explain each of the following:- (4 points each) i- Glutamate occupies a central role in amino acid metabolism. ii-Glycogen is stored in liver and muscle and is used as a carbohydrate energy source by the body. iii- The significance of Pantothenic acid in the body. ## 4-Illustrate in equations:-(4 points each) i- The overall equation for non-oxidative phase of HMPS is :- Ribose-5-phosphate + 2 Xylulose-5-phosphate 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate ii-The steps of phospholipids synthesis iii- Many different systems have been suggested for the recycling of pyridine nucleotides # 5- Choose the correct answer (s) .Explain by equations , the reason(s):- (4 points each) i-The biosynthesis of the neurotransmitters, acetylcholine, gamma-aminobutyric acid (GABA), and alcoholic fermentation in yeast require:- a- TPP b-butyric acid c-NAD+. d- ethanol ii-The methylation of homocysteine, requires:- a- 5-MTHF b- folic acid c- SAM d- methionine # iii-NAD+ dependent enzymes are as follows:- a) PDHc c) succinate dehydrogenase b) glutamate dehydrogenase d) glucose-6-phosphate dehydrogenase # TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT CHEMISTRY - BIOCHEMISTRY SECTION EXAMINATION FOR SENIORS (4TH YEAR) STUDENTS OF BIOCHEMISTRY COURSE TITLE: Biotechnology - Ph. D. Afrah Fatthi Salama COURSE CODE: 14063 DATE: 22 JANUARY, 2013 | TERM: FIRST TOTAL ASSESSMENT MARKS: 20 TIMELLOWED: 3 HOURS أطيب التمنيات بالنجاح و التوفيق الدر أفراح فتحي سلامه ملحوظة هام المادة الثانية في الدر المادة الثانية في الدر المادة الثانية في الدر المادة الثانية في الدر المادة الماد 5 24 (2) Tanta University Faculty of science Chemistry Department Time allowed: 2 hours Date: 28/12/2013 # Final examination of fourth level students (C.H.) section: (Chemistry and Chemistry/Biochemistry) Statistical thermodynamics CH4111 # **Answer all questions:** 1-a) Discuss the relationship between entropy and probability. b) | I | 1,2,3 | | | |----|-------|-----|--| | | 4,5,6 | | NAME AND THE PROPERTY OF P | | II | 1,3 | 4,6 | 5,2 | The above diagram shows two "macrostates", I and II. Calculate the number of "microstates" corresponding to both "macrostates" I and II. - 2-a) Calculate the average energy for triatomic linear and nonlinear molecules. - b) Discuss the barometric formula. - 3- Discuss Boltzmann distribution law. - 4-Discuss the absolute reaction rate theory. J 44 (D) # TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY # **EXAMINATION FOR CRDIT HOUR STUDENTS** COURSE TITLE: LASER CHEMISTRY COURSE CODE: CH4113 DATE:30 DECEMBER, 2013 TERM: FIRST TOTAL ASSESSMENT MARKS: 50 TIME:2 HOURS # Answer the following questions (10 marks each): - 1- The synthesis of vinyl chloride from 1,2-dichloroethane is an important multibillion industrial process demonstrating the advantages of laser applications. Write the reaction scheme and mention the advantages of laser application in comparison with thermal applications. - 2- The technique of thermal lensing is an important application on laser collimation. Draw a time- resolved thermal lensing experimental setup and trace upon using the technique to study singlet oxygen sensitization kinetics. - 3- Using suitable diagrams and illustrations, describe each of the following laser systeme: - i He / Ne four energy level laser - ii Excimer laser - iii Proton transfer dye laser - iv Solid state laser based on p-n junction. - 4 Discuss each of the following: - (a) The technique of Raman spectroscopy showing energy level diagram, the spectral output and band assignment. - (b) The principal of MUCAP reagent operation - (c) $\Delta E_{S,T}$ in carbonyl and olefinic compounds - (d) Photodynamic therapy (PDT) - 5 Explain the reason for each of the following: - (a) HClO₄ and not HCl is commonly used in adjusting pH of dye laser media. - (b) R6G-I solutions are strongly fluorescent in ethanol but non-fluorescent in chloroform. END OF EXAM EXAMINER: PROF. DR. EL-ZEINY MOUSA EBEID # TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY # EXAMINATION FOR CRDIT HOUR STUDENTS COURSE TITLE: LASER CHEMISTRY COURSE CODE: CH4113 DATE:30 DECEMBER, 2013 TERM: FIRST TOTAL ASSESSMENT MARKS: 50 TIME:2 HOURS # Answer the following questions (10 marks each): - 1- The synthesis of vinyl chloride from 1,2-dichloroethane is an important multibillion industrial process demonstrating the advantages of laser applications. Write the reaction scheme and mention the advantages of laser application in comparison with thermal applications. - 2- The technique of thermal lensing is an important application on laser collimation. Draw a time- resolved thermal lensing experimental setup and trace upon using the technique to study singlet oxygen sensitization kinetics. - 3- Using suitable diagrams and illustrations, describe each of the following laser systeme: - i He / Ne four energy level laser - ii Excimer laser - iii Proton transfer dye laser - iv Solid state laser based on p-n junction. - 4 Discuss each of the following: - (a) The technique of Raman spectroscopy showing energy level diagram, the spectral output and band assignment. - (b) The principal of MUCAP reagent operation - (c) $\Delta E_{S,T}$ in carbonyl and olefinic compounds - (d) Photodynamic therapy (PDT) - 5 Explain the reason for each of the following: - (a) HClO₄ and not HCl is commonly used in adjusting pH of dye laser media. - (b) R6G-I solutions are strongly fluorescent in ethanol but non-fluorescent in chloroform. END OF EXAM EXAMINER: PROF. DR. EL-ZEINY MOUSA EBEID