4)

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

EXAMINATION FOR (FOURTH YEAR) STUDENTS OF MATHEMATICAL STATISTICS

DATE: 11-1-2015 TOTAL ASSESSMENT MARKS: 150

COURSE CODE: ST4105

TIME ALLOWED: 2 HOURS

Answer the Following Questions:

QUESTION 1:

a) State and prove factorization theorem.

b) Find the p.d.f. of maximum and minimum of a random sample of size m from a population with p.d.f. g(x) and c.d.f. G(x).

QUESTION 2:

a) Explain in-detail the test of equality of several means.

b) Show that if $X_1, X_2, ..., X_n$ are independent random variables each an exponential distribution with parameter α_i , i = 1, 2, ..., n, then K has exponential distribution with parameter $\alpha_1 + \alpha_2 + ... + \alpha_n$, where $K = \min(x_1, x_2, ..., x_n)$.

QUESTION 3:

a) Let $X_1, X_2, ..., X_m$ be a random sample from a distribution that is $N(\theta, 1)$, where the mean θ is unknown. Is there exist a uniformly most powerful test of $H_0: \theta = \theta'$ against $H_1: \theta \neq \theta'$.

b) Let X be a random variable has the following p.m.f.

$$f(x;\lambda) = \begin{cases} \lambda^{x} (1-\lambda)^{1-x}, x = 0, 1\\ 0, & otherwise. \end{cases}$$

Test $H_0: \lambda = \frac{1}{3}$ against $H_1: \lambda = \frac{2}{3}$.

Tanta University Faculty of Science

Department of Mathematics

4th year (Statistics Program)
Reliability Theory
Code: ST4103

Time: 2 hours January 2015

Answer the following questions:

1- (a) Consider an unit with reliability $R(t) = \exp[-(5t + 8t^2)]$, t > 0Find F(t), f(t) and $\lambda(t)$

- (b) Consider an unit with failure rate $\lambda(t)$ =at, t > 0, with median time 3 hours, find the constant a and the reliability function at time t=6 hours.
- (c) Parallel system has two identical components with pdf: $f(t) = (at) \exp[-(at^2/2)] \;, \; t \succ 0, \; a \succ 0$ Find R_p(t) and (MTTF)_p of parallel system at t=1000 hr. and λ =0.006 1/hr.
- 2- (a) Find $R_{k/n}(t)$ and $(MTTF)_{k/n}$ of k-out-of-n:G system. Where the reliability of each unit is: $R(t) = \exp[-t\lambda]$

(b) 30 light bulbs were tested and the failures in 600 hours intervals are

(0) 00 11	gill buibs we	C toolog and the	ranaroo iii ooo iii	dare intervale are	
Time intervals (hours)	0< t ≤ 600	600< t ≤ 1200	1200< t ≤ 1800	$1800 < t \le 2400$	t>2400
Failure in the intervals	14	8	5	3	0

Find the computation of F(t), R(t), $\lambda(t)$ and f(t) measures for the light bulb test dat

(c) Find the reliability function and MTTF of system that consists of two units , one of them operating with failure rate λ_1 and the second in standby with failure rate λ_2 , assumed the switch is perfect.

خ بخار النقر بح

Á	S	1	NA POR
		1	
U			
	U		

التاريخ: ديسمبر ٢٠١٤

حامعة طنطا كلية العلوم قسم الرياضيات

امتحان الطلاب المستجدون — الفرقة الرابعة — شعبة الاحصاء

كود المقرر: ST4107

اسم المقرر: نظرية التقدير

الفصل الدراسى: الأول

الدرجة الكلية للامتحان: ١٠٠٠

زمن الامتحان: ساعتان

أجب عن الأسئلة الآتية

السؤال الأول:

- 1. اثبت أنه إذا كان هناك مقدر اغير متحيز بأقل تباين MVUE فإنه يكون وحيدا Unique.
 - ٢. استنتج فترة الثقة للفرق بين نسبتي مجتمعين في حالة العينات الكبيرة.

السؤال الثاني:

- ۱. إذا كانت $X = (X_1, X_2, ..., X_n)$ عينة عشوائية مختارة من مجتمع يتبع توزيع $N(0, \theta)$ فأوجد الحد الأدنى لتباين المقدر الغير متحيز للمعلمة θ . هل يوجد مقدر غير متحيز بأقل تباين للمعلمة θ ?
- ٢. إذا كان لدينا عينة عشوائية مختارة من مجتمع يتبع توزيع بواسون ببارامتر ٨ و كان $MSE(T_1), MSE(T_2)$ هما مقدران للمعلمة λ فقارن بين $T_1 = \bar{X}, T_2 = 2X_1$

السؤال الثالث:

- $\operatorname{Gam}_{\operatorname{ma}}(lpha,eta)$ عینهٔ عشوائیهٔ مختارهٔ من مجتمع یتبع توزیع $X=(X_1,X_2,...,X_n)$ ۱. اذا کانت فاستخدم طريقة العزوم لإيجاد مقدرات بنقطة للمعالم (α , β).
- $U = \max(X_i)$ أن لدينا عينة عشوائية من مجتمع يتبع توزيع منتظم على الفترة $(0, \theta)$ فاثبت أن $(0, \theta)$ هو تقدير متسق المعلمة θ

د/ نعمــة صلاح يوسف د/ هالـة على فرجاني الممتحنون:

مح تمنياتي الجميع بالنجاح و التوفيق

2001 - sleps - - lyb) 2 . = 2 3, 31 +

الفصل الدراسى الاول الماده :احصاء لامعلمى

الزمن: ساعتان الشعبه: احصاء

درجه الاختبار: 150

جامعه طنطا كليه العلوم قسم الرياضيات

المستوى الرابع

العام الجامعي 2014- 2015 م

اختبار نهائى

ST 4101

Answer the following questions: (50 degrees for each question)

- 1) a-Answer by using $\sqrt{\text{or}} \times$
 - i) confidence interval for X_q of population satisfies :

 $p(Y_s < X_a < Y_r) < 1 - \alpha$, where Y_s, Y_r are two order statistics, s < r, and α is level of significance

- ii) The sum of positive signs is statistic of signed rank test
- iii) If H_0 is true, then statistic of sign test follows Binomial distribution with q = 0.5
- vi) In some tests ,level of significance is less than zero
- v) Order statistic Y_4 is an estimator for $X_{0.25}$, where size of random sample is 15
- b)-Explain in-detail Kolmogorov-Smirnov test
- c)- If Y_1 , Y_2 , ..., Y_8 is order random sample from continuous distribution . Find j-i which made the interval ($Y_i Y_j$) contains 50% from items of distribution ,where coefficient of tolerance =0.95
- 2) a- Find the confidence interval for median of population(γ). If the size of random sample is 10 and α =0.03
 - b-Obtain the distribution of statistic (W) of Wilcoxon test

3)Two random samples, from two different populations, values of the first are: 68 79 87 80 72 90 75 67 23 65 90 88 51 57 48 45 69, values of the second are :63 72 85 83 68 87 72 70 21 67 85 84 53 52 48 43 69 . Test $H_0: \gamma_1 = \gamma_2$ against $H_1: \gamma_1 \neq \gamma_2$ use $\alpha = 0.05$ by using two procedures, where γ_1, γ_2 are medians of first and second populations respectively.

 $Z_{0.95}=1.645$, $Z_{0.9}=1.282$, $Z_{0.975}=1.96$

, bein 9-0/ suldist / ie, for