RY M. H. Ghanim, O.A. Tantawy and Fawzia M. Selim Department of Mathematics, Faculty of Science, Zagazig University, Zagazig-Egypt. Received: 17-11-1993 #### ABSTRACT In [3] A. Mashhour et al introduced the concept of fuzzy disjointness. Two fuzzy sets A, B in X are said to be fuzzy disjoint if $A \le co$ B, where co B is the complement of B. Using this concept, they introduced FT_i separation axioms as a generalization for the basic separation axioms T_i $(i=1,\ldots,4)$. In [5] M.K.singal et al used the concepts of regular open fuzzy sets [1] and fuzzy disjointness to introduce some fuzzy almost separation axioms which are stronger than those of Mashhour. Unfortunately, some results in [5] are incorrect. In this paper, we use the concept of the quasi-coincident relation[4] to restate lower fuzzy separation axioms and give a corrected version for some definitions and results in [5]. Keywords: Fuzzy topology, separation axioms. AMS Subject Classification 54A40. #### 1-Preliminaries Definition 1.1 [2]. Let X be a non-empty set, $\tau \subset I^X$, the pair (X,τ) is an fts iff it satisfies the following conditions: - (1) $\phi, X \in \tau$ - (2) If u, vet, then unvet - (3) If $u_j \in \tau$ for all $j \in J$ then, $U\{u_j | j \in J\} \in \tau$ Let A be a fuzzy set in X. The closure and the interior of A(denoted by cl A and int A resp.) are defined by cl $A=\bigcap\{F\in I^X \mid F\in \tau^c \text{ and } A\leq F\}$ and int $A=\bigcup\{G\in I^X \mid G\in \tau \text{ and } G\leq A\}$ respectively Definition 1.2 [1]. Let (X,τ) be an fts. A fuzzy set A in X is said to be regular-open iff A= int cl A. A fuzzy set u in X is said to be regular-closed iff co u is regular-open. Equivalently $u \in I^X$ is regular-closed iff u=cl int u. Thus every regular-open (regular-closed) fuzzy set is open (closed) but the converse does not hold[1] Definition 1.3 [1]. A subfamily β of I^X (i.e. $\beta \subset I^X$) is a base for a fuzzy topology on X iff (1) $X=U(B|B\in\beta)$ (2) For each B_1, B_2 in β and for each fuzzy point $x_{\lambda} \in B_1 \cap B_2$ there exist $B^* \in \beta$ such that $x_{\lambda} \in B^* \leq B_1 \cap B_2$. Definition 1.4 [1]. Let (X,τ) be an fts. The family $\beta = \{A \in I^X | A \text{ is regular open } \}$ is a base for a fuzzy topology τ^* on X. The fts (X, τ^*) is called the semi-regularization of (X, τ) . The fts (X,τ) is said to be semi-regular space iff $\tau = \tau^*$ Definition 1.5 [4]. Let A,B be two fuzzy sets in X. A is said to be quasi-coincident with B(denoted A q B) iff there exists $x \in X$ such that A(x)+B(x)>1. Consequently, a fuzzy point x_{λ} is quasi-coincident with A iff $\lambda+A(x)>1$. Definition 1.6 [5]. Let (X,τ) be an fts. A fuzzy set A in X is said to be δ -open iff $A \in \tau^*$ that is $A \in I^X$ is δ -open iff $A = \bigcup_i u_i$ where u_i is a regular open fuzzy set for each i. The fuzzy set A in X is said to be δ -closed iff co A is δ -open. Equivalently, $A \in I^X$ is δ -closed iff $A = \bigcap F_i$ where F_i is a regular-closed fuzzy set for each i. Proposition 1.1 [1].(1) The closure of an open fuzzy set is regular-closed. (2) The interior of a closed fuzzy set is regularopen. Definition 1.7 [1]. Let (X,τ) and (Y,U) be two fts. A mapping f: X--->Y is called a fuzzy almost-continuous mapping iff the inverse image of every regular open fuzzy set in Y is open in X. Definition 1.8 [5]. Let (X,τ) and (Y,U) be two fts. A mapping f: X--->Y is fuzzy almost open(closed) iff for every regular open (regular-closed) fuzzy set u in X, f(u) is open(closed) in Y. Lemma 1.1 [5] If f:X---> Y is fuzzy almost continuous and fuzzy almost open, then, the inverse image of every fuzzy regular-open (regular-closed) set is regular-open (regular-closed). For notions and results used but not defined or shown we refer to [4] 2. Fuzzy quasi-separation Axioms Using the concept of a quasi-coincident relation, we introduce the fuzzy quasi-separation axioms. These new axioms as well as those in [3] are reduced, in the crisp case to the ordinary basic separation axioms. Definition 2.1. An fts (X,τ) is said to be: - (i) Fuzzy quasi- T_* (in short FQ T_*) space iff for every pair of fuzzy points x_{λ} , y_{μ} in X ($x \neq y$) there exists $u \in \tau$ such that $x_{\lambda} \neq u \leq co y_{\mu}$ or $y_{\mu} \neq u \leq co x_{\lambda}$ - (ii) Fuzzy quasi- T_1 (in short FQ T_1) space iff for every pair of fuzzy points x_{λ}, y_{μ} in X $(x \neq y)$ there exists $u, v \in \tau$ such that $x_{\lambda} \neq u \leq co y_{\mu}$ and $y_{\mu} \neq v \leq co x_{\lambda}$ - (iii) Fuzzy quasi- T_2 (in short FQ T_2) space iff for every pair of fuzzy points x_{λ}, y_{μ} in X ($x \neq y$) there exists $u, v \in \tau$ such that $x_{\lambda} \neq u \leq co y_{\mu}$, $y_{\mu} \neq v \leq co x_{\lambda}$ and $u \neq v$. - (iv) Fuzzy quasi- T_s (in short FQ T_s) space iff every fuzzy point in X is closed. - (v) Fuzzy quasi- $T_{2\ 1/2}$ (in short FQ $T_{2\ 1/2}$) space iff for every pair of fuzzy points x_{λ} , y_{μ} in X ($x \neq y$) there exist $u, v \in \tau$ such that $x_{\lambda} \neq u \leq co \ y_{\mu}$, $y_{\mu} \neq v \leq co \ x_{\lambda}$ and $(cl\ u) \neq (cl\ v)$. - (vi) Fuzzy quasi-regular (in short FQR) space iff for every fuzzy point x_{λ} in X and closed fuzzy set F in X such that $x_{\lambda} q$ (co F) there exist $u, v \in \tau$ such that $x_{\lambda} q u, F q v$ and $u \cap v = \phi$ A fuzzy quasi-regular space which is FQT_s is said to be FQT_3 -space. (vii) Fuzzy quasi-normal (in short FQN) space iff for every pair of closed fuzzy sets F_1, F_2 in X such that $F_1q(coF_2)$ there exist $u, v \in \tau$ such that F_1qu, F_2qv and $u \cap v = \phi$ A fuzzy quasi-normal space which is FQT_s is said to be FQT_4 -space. One may notice that, in the crisp case, the above FQT_i axioms are reduced to the ordinary T_i -axiom for every $j \in \{0,1,21/2,3,4\}$. Also, FQT_s is reduced to the ordinary T_i -axiom. Theorem 2.1. An $fts(X,\tau)$ is FQT_1 iff every crisp point in X is closed. Proof. Let x_1 be a crisp point in X. Then, for every fuzzy point $p=y_{\mu}$ in X with $x\neq y$ there exist $u,u_p\in \tau$ such that $x_{\lambda}qu\leq cop$ and $pqu_p\leq cox_1$. Hence, for every fuzzy point p with p q(co x_1), there exist $u_p \in \tau$ such that p q u_p . Consequently $pq(Uu_p)$. Thus, p q (co x_1) implies p $q(Uu_p)$. Since $Uu_p \leq cox_1$, then , for every fuzzy point p with p q (Uu_p) , $pq(cox_1)$. Hence p q ($\bigcup u_p$) iff p q (co x_1) i.e. $\bigcup u_p = co x_1$. Therefore, co x_1 is open and x_1 is closed. Conversely, let x_{λ}, y_{μ} be a pair of fuzzy points in X with $x\neq y$. Since x_1 and y_1 are closed; co x_1 and co y_1 are open. Since $x_\lambda q \cos y_1; y_\mu q \cos x_1$, $\cos x_1 \le \cos x_\lambda$ and $\cos y_1 \le \cos y_\mu$; then (X, τ) is FQT_1 . Corollary 2.1. Every $\mathrm{FQ}\,T_s$ is FQT_1 but the converse is not true, in general. Example 2.1. Let $X=\{x_1,x_2\}$ and let $A=\{x_\lambda \mid x\in X, \lambda\in [1/2,1]\}$ and $B=\{u\in I^X\mid \text{ range } u\le [1/2,1]\}$. Let $\tau=A\cup B\cup \{\phi\}$. Then, τ is a fuzzy topology on X. Since all crisp points are τ -closed; (X,τ) is FQT_1 . But the fuzzy point p with support x_1 and value 3/4 is not τ -closed. Consequently, (X,τ) is not FQT_3 . Theorem 2.2. For every $i \in \{0,1,2,2,1/2,3,S\}$ the corresponding FQT_i property is hereditary. Proof. Let us prove, for example, the case i=0. Let (X,τ) be an FQT_0 fts and let (Y,τ_Y) be a subspace of (X,τ) . Let x_λ,y_μ be two fuzzy points in Y such that $x\neq y$. Since $Y\leq X$, then, there exist $u\in \tau$ such that $x_\lambda q u\leq coy_\mu$ or $y_\mu q u\leq cox_\lambda$. Let $u^\star=Y\cap u\in \tau_Y$, then, $x_\lambda q u^\star\leq coy_\mu$ or $y_\mu q u^\star\leq cox_\lambda$. Hence, (Y,τ_Y) is FQT_0 . The proofs for other cases are similar. Theorem 2.3. Fuzzy quasi-normality is hereditary with respect to closed subspaces. Proof. Let (X,τ) be an FQN space and let (Y,τ_Y) be a closed subspace. Let F_1 and F_2 be τ_Y -closed fuzzy sets such that $F_1 q co_Y F_2$. Since Y is closed, then F_1,F_2 are closed in X and $F_1 q (co F_2)$, then there exist $u, v \in \tau$ such that $F_1 q u, F_2 q v$ and $u \cap v = \phi$. Let $u^* = u \cap Y, v^* = v \cap Y$. Hence (Y, τ_Y) is FQN. Remark 2.1. One may easily prove that for every $i \in \{0,1,2,2,1/2,3,4,S\}$ the corresponding FQT property is additive (see[3] for the definition of an additive property). 3-Fuzzy almost-quasi-separation axioms In this section we introduce the concepts of fuzzy almost quasi-separation axioms. Using these new axioms we avoid some deviations in [5]. Definition 3.1. An fts (X,τ) is said to be fuzzy almost-quasi To $(FAQT_0)$ for brief) iff every pair of fuzzy points x_λ,y_μ in X with $x\neq y$ there exists a regular open fuzzy set u such that $x_\lambda q u \leq co y_\mu$ or $y_\mu q u \leq co x_\lambda$. Equivalently, there exists a δ -open fuzzy set w such that $x_\lambda q w \leq co y_\mu$ or $y_\mu q w \leq co x_\lambda$. Remark 3.1. In [5] Singal et al has defined an fts (X,τ) to be FAT₀ if it satisfies one of the following conditions: - (i) There exists a regular-open fuzzy set u in X such that $x_{\lambda} \in u \leq co y_{\mu}$ or $y_{\mu} \in u \leq co x_{\lambda}$ - (ii) There exists a δ -open fuzzy set W in X such that $x_{\lambda} \in w \le coy_{\mu}$ or $y_{\mu} \in w \le cox_{\lambda}$. Indeed, the two conditions are equivalent in the crisp case. But, in general, they are not equivalent. The reason is the known fact that $x_{\lambda} \in \bigcup \{u_i | i \in J\} \neq \emptyset$ there exists $i \in J$ such that $x_{\lambda} \in u_i$, where x_{λ} is a fuzzy point in X and u_{i} is a fuzzy set in X for all $i \in J$. Using the concept of a quasi-coincident relation, we avoid this deviation. Now, we give corrected versions for Theorems $(4.3) \dots (4.5)$ in [5]. Theorem 3.1.An fts(X, τ) is FAQ T_o iff for every pair of fuzzy points x_{λ} , y_{μ} in X(x*y), $x_{\lambda} \notin \delta - cl y_{\mu}$ or $y_{\mu} \notin \delta - cl x_{\lambda}$. Proof. Let x_{λ}, y_{μ} be a pair of fuzzy points in X with $x \neq y$ then, there exists a regular open fuzzy set u in X such that $x_{\lambda} q u \leq coy_{\mu}$ or $y_{\mu} q u \leq cox_{\lambda}$. Let $x_{\lambda} q u \leq coy_{\mu}$. Then $x_{\lambda} \notin cou$. Since $y_{\mu} \leq cou$ and co u is δ -closed, then $x_{\lambda} \notin \delta - cl y_{\mu}$. Conversely, let x_{λ} , y_{μ} be a pair of fuzzy points in X with $x \neq y$, $x_{\lambda} \notin (\delta - cl y_{\mu})$ or $y_{\mu} \notin (\delta - cl x_{\lambda})$. Then $x_{\lambda} q co (\delta - cl y_{\mu})$ or $y_{\mu} q co (\delta - cl x_{\lambda})$. Since $co (\delta - cl x_{\lambda}) = \bigcup_{i} u_{i}$, $co (\delta - cl y_{\mu}) = \bigcup_{i} v_{i}$, where u_{i} , v_{i} are regular-open fuzzy sets in X for all i. Then, there exist a regular-open fuzzy set u_{i} in X such that $x_{\lambda} q u_{i} \leq co y_{\mu}$ or $y_{\mu} q u_{i} \leq co x_{\lambda}$. Thus (X, τ) is $FAQT_{o}$. Corollary 3.1 An fts(X, τ) is FAQ T_o iff (X, τ^*) is FQ T_o . Corollary 3.2 A fuzzy semi-regular space is $FAQT_o$ iff it is FQT_o . Definition 3.2 An fts(X, τ) is FAQ T_1 iff for every pair of fuzzy points x_{λ}, y_{μ} in X with different supports, there exists a pair of regular-open fuzzy sets u,v in X such that $x_{\lambda}qu \le coy_{\mu}$ and $y_{\mu}qv \le cox_{\lambda}$. Theorem 3.2 An fts(X, τ) is FAQ T_1 iff every crisp point is δ -closed. Proof. Let x_1 be a crisp point and let p be a fuzzy point in X such that supp $p \neq x$. Then, there exists regular-open fuzzy set u_p in X such that $pqu_p \leq cox_1$. Let $A=\bigcup\{u_p:pqcox_1\}$. One may easily verify that $cox_1=A$. Consequently, cox_1 is δ -open and x_1 is δ -closed. Conversely, let x_{λ}, y_{μ} be a pair of fuzzy points in X with $x \neq y$, then x_{λ} and y_{λ} are δ -closed fuzzy sets. Consequently, $\cos x_{\lambda}$ and $\cos y_{\lambda}$ are δ -open. Then $\cos x_{\lambda} = \bigcup_{i} u_{i}$ and $\cos y_{\lambda} = \bigcup_{j} v_{j}$ where u_{i}, v_{j} are regular-open fuzzy sets in X for all i,j. Then, $y_{\mu}q(\cos x_{\lambda}) \leq \cos x_{\lambda}$ and $x_{\lambda}q(\cos y_{\lambda}) \leq \cos y_{\mu}$. Hence, there exist two regular-open fuzzy sets u_{i}, v_{j} in X such that $y_{\mu}qu_{i} \leq \cos x_{\lambda}$ and $x_{\lambda}qv_{j} \leq \cos y_{\mu}$. Consequently, (X, τ) is FAQ T_{1} . Corollary 3.3 An fts(X, τ) is FAQ T_1 iff (X, τ^*) is FQ T_1 Corollary 3.4 A fuzzy semi-regular space is ${\rm FAQ}\,T_{\rm 1}$ iff it is ${\rm FQ}\,T_{\rm 1}$ Definition 3.3 An fts (X, τ) is FAQ T_s iff every fuzzy point in X is δ -closed. Thus, every $FAQT_s$ is $FAQT_1$, but the converse is, in general not true. The fts in example 2.1 is $FAQT_1$ but it is not $FAQT_s$. Definition 3.4. An fts(X, τ) is FAQ T_2 space iff for every pair of fuzzy points x_{λ} , y_{μ} in X with different supports, there exists a pair of regular-open fuzzy sets u,v in X such that $x_{\lambda} qu \le coy_{\mu}$, $y_{\mu} qv \le cox_{\lambda}$ and $u \le cov$. Definition 3.5. An fts(X, τ) is FAQ $T_{2\,1/2}$ space iff for every pair of fuzzy points x_{λ} , y_{μ} in X with different supports, there exists a pair of regular-open fuzzy sets u,v in X such that $x_{\lambda} qu \le coy_{\mu}$, $y_{\mu} qv \le cox_{\lambda}$ and $(\delta-clu) \le co(\delta-clv)$. Thus, every FAQ $T_{2\,1/2}$ is FAQ T_2 . Theorem 3.3. Let(X, τ) and (Y,U) be fts. let f:X-->Y be an injective fuzzy almost continuous and fuzzy almost open. Then X is FAQ T_i if Y is FAQ T_i , where i $\in \{0,1,2,2,1/2\}$. Proof. Let us prove the theorem in case i=0. Let x_{λ} and y_{μ} be two fuzzy points in $X(x \neq y)$. Then $f(x_{\lambda})$ and $f(y_{\mu})$ are two fuzzy points in Y whose supports are f(x), f(y) respectively, and $f(x) \neq f(y)$. Hence, there exists a regular-open fuzzy set u in Y such that $f(x_{\lambda})$ $qu \leq co(f(y_{\mu}))$ or $f(y_{\mu})$ $qu \leq co(f(x_{\lambda}))$. Therefore, $x_{\lambda} q(f^{-1}(u)) \le co(f^{-1}f(y_{\mu}))$ or $y_{\mu}q(f^{-1}(u)) \leq co(f^{-1}f(x_{\lambda}))$. Since $f^{-1}(u)$ is regular-open, from Lemma 2.1, then $x_{\lambda}q(f^{-1}(u)) \leq coy_{\mu}$ or $y_{\mu}q(f^{-1}(u)) \leq cox_{\lambda}$. Thus, (X,τ) is FAQ T_o . The proofs of other cases are similar. Theorem 3.4 Every regular-open subspace of an $FAQT_i$ space is $FAQT_i$ where $i\in\{0,1,2,2,1/2\}$. Proof. We prove the theorem when i=2. Let (X,τ) be $FAQT_2$ and let (Y,τ_Y) be a regular-open subspace. Let x_λ,y_μ be two fuzzy points in Y with different supports. Then, there exists two regular-open fuzzy sets u,v in X such that $x_\lambda qu \le coy_\mu$, $y_\mu qv \le cox_\lambda$ and $u \le cov$. Let $u^*=u\cap Y$, $v^*=v\cap Y$. Then u^*,v^* are regular-open fuzzy sets in Y. Thus (Y,τ_Y) is $FAQT_2$ -space. The proofs of other cases are similar. Corollary 3.4. Every open subspace of an $FAQT_i$ space is FQT_i , where $i \in \{0,1,2,2,1/2\}$. Theorem 3.5. Let (X,τ) , (Y,U) be two fts. let f:X--->Y be an injective and fuzzy almost continuous. Then, (X,τ) is FQT_i if (Y,U) is $FAQT_i$, where $i\in\{0,1,2,2,1/2\}$ Proof. In this case, the inverse image of a regular-open fuzzy set is an open fuzzy set. The proof can be completed using similar arguments as in Theorem 4.3. Corollary 3.5. An fts(X, τ) is FAQ T_i iff (X, τ *) is FQ T_i , where $i\in\{0,1,2,2\,1/2\}$. Corollary 3.6. A fuzzy semi-regular space is $FAQT_i$ iff it is FQT_i , where $i \in \{0,1,2,2,1/2\}$. ### REFERENCES - [1]K.K. Azad, on fuzzy semi-continuity, fuzzy almost-continuity, and fuzzy weakly continuity, J.Math. Anal. Appl. 82(1981)14-32 - [2] C.L. Change, Fuzzy topology, J. Math. Anal. and Appl. 24(1968) 182-190 - [3] A.S. Mashhour, E.E. Kerre and M.H. Ghanim, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. and Appl. 102 (1984)189— 202. - [4] Pu Pao. Ming and Liu Ying, Fuzzy topology 1, Neighbourhood structure of a fuzzy point and Moore-smith convergence, J. Math. Anal. and Appl. 76(1980) 571-599. - [5] M.K. Singal, N. Rajvanshi, regularly-open sets in fuzzy topological spaces, Fss 50(1992)343-353. ## عن مسلمات الالقصال السفلي # محمد حسنى غانم ، أسامة عبد الحميد طنطاوى ، فوزية محمود سليم قسم الرياضيات - كلية العلوم - جامعة الزقازيق الزقازيق - جمهورية مصر العربية فى عام ١٩٩٢ استخدم سنجال وآخرون مفهوم الفئة الفازية المنتظمة (الذى قدمه أزاد فى عام ١٩٨١) ومفهوم التباعد الفازى (الذى قدمه مشهور فى عام ١٩٨٤) واستخاعوا تقديم مسلمات انفصال فازيه أقوى من المسلمات التى قدمها مشهور. ولكنا وجدنا بالدراسة أن بعض النتائج فى بحث سنجال غير صحيحة. فى هذا البحث نستخدم مفهوم علاقة التطابق الظاهرى (التى عرفها منج فى عام ١٩٨٠) لاعادة صياغة مسلمات الانفصال السغلى واعطاء الرؤية الصحيحة لبعض التعريفات والنتائج فى بحث سنجال.