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ABSTRACT

Plane steady Couctte flow at low Mach
number is studied in the presence of a constant
nagnetic field. The particles reflected from the
twe walls with arbitrary reflaction coefficient
are considered. The density of our gas is
considered as a function of x(x is the distance
along the walls). An approximate solution to the
Boltzmann equation, of modified Liu-Lees type, is
found to yield simple analytic expression for
flow velocity, shear stress and coefficient of
viscosity. These predictions give correct results
in both the continuum and rarefied limits and
show reasonablc agreecment with other more exact
predictions in the limited regimes for which such
predictions have becen obtained. We shall neglect
electric fields arising from the distribution of
charged particles, and induced magnetic fields
which will arise from bulk motion of the charged
gas.

Introduction
Rarefied gas dynamics problems arise in several
disciplines including those the vacuum science and technology,

space scicnce, astrophysics, plasma physics and nuclear fusion

and fission. Successful formulation and solution of rarefied
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gas dynamics problems is also crucial to advances in aspects
of environmental sciences where understanding and control of
the formation, motion, reactions and evolution of particles of
varying composition and shapes, and their spatial and temporal
distribution, under gradients of concentration, temperature,
pressure and electromagnetic radiation and other fields is of
importance.

The consideration of problems with boundary surfaces is
still of modest interest for the case of a plasma. In
Iterature | Shidloviskiy, 1967| |1| the case of Couette flow
of fully ionized plasma in an external electric field is
presented. The method is based on replacing the Boltzmamn
equation by moment equations with the simultaneous
introduction of two-stream Maxwellian distribution functions.

Simple problem in plane Coutte flow, originally
suggested by pomraning [2| poses interesting questions in gas
dynamic and kinetic theory. A negative~harmonic-oscillator

force is imposed on the gas, driving molecules towards either
boundary plate.

Earlier work on this problem has been either incorrect 2]
(see Ref. 3), or has given predictions for only a limited
portion of the circumstances considered here |3-6|. Johnson
and Stopford |5| obtained predictions showing noncontinuum
effects, using a standard Gross—-Jackson-Ziering |7| half-range
polynomial expansion to solve the appropriate BGK|8|
equation. The method appears to yield predictions, however,
only when gas densities and force strengths are such that the
gas is near—continuum throughout Cassell and William [6] on
the other hand, use the method of characteristics plus a

first-collision approximation to obtain predictions for the
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deviations of flow from the known free-molecular behaviour
predicted by Johnson |3], |4].

Finally, Johnson |4| and stopford |5] present a crude
approximation to the flow for very strong forces and for gases
containing no more then a small but appreciable continuum
region.

Here the Liu-Lees |9| approximation is modified so as
to apply both for zero and nonzero external force. The method
is then to used to obtain predictions for gas flow and shear
stress. These results apply to steady Couette flow at low Mach
number, for any constant magnetic field, and arbitrary
reflection coefficient and degree of rarefaction.

Plane steady Couette fluow at low Mach number is studied
by Johnson and Stopford |10| in the presence of an external
force field. Force strengths may be so great that the gas in
highly rarefied in one region of the flow but a continuum
nearby.

In the present work we consider a steady Couette flow of
charged particles between two infinite parallel plates move in

the Xy plane opposite to each other in x-direction with

velocity (t%;) under the influence of a constant magnetic

field (o,o0,mB,) . The whole system is assumed to be at

constant temperature T,.

We consider also the particles
reflected from the two plates with arbitrary reflection
coefficients.
2.BASIC EQUATION OF THE RAREFIED GAS

The Boltzmann equation may be written in the following

manner ( Cercignani 1975 ) |11]
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(v.V+£.V‘,)f(r,v) =J(f), (1

where f£(r,v) is the velocity distribution function, m the
mass of a gas atom, F the force acting on a gas atom and J(f)
the non-linear collision term.

Now we reduce our problem to a plane symmetry in which
the gas is confined between two infinite parallel plates at

¥=¢d/2 which are travelling in the x—direction with constant

velocities :t%’. We also set the forces term F,=eB,V, and

Fy=—eBon » F,=0 Equation (1) becomes :

OF . Of e V_Qii:_@(fto)-f). @)
¥y

—_+V +-—B,v
xax o

oL e Jof _e
Y3y m

v ~—~-—2=8
Yov, m

o X

where L is the mean free path, £/ local Maxwellian

distribution and T, is the physical temperature.

y=4/2

The physical problem

Replacing the velocity and distance variables in eqn. (2) such
that :
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Cye=fe, vy Cy=fe, v, y=yd, x=xd,

where d is the plate spacing , we find after dropping the bar

over dimensionless quantities :

of . of of of
Com=+C, == +MC - =3 (FO-F
5 TCr 3 HCy ac. MC, 3c, (f ) (4)
where M=deB,fa /m magnetic Mach number,
6=ﬁi@ degree of rarefaction,
__m
and «_= ZRT. °

The reason for choosing this form ¢f F is that it leads,

in a locally Maxwellian gas, to a gas density of the form
n, (x,y) =n,(x) e M-I, )

The assumption of gentle flow allows one to linearize the
Boltzmann equation for the molecular number-density

distribution function f about the zero-shear distribution

function £ |, such that:
£ (o) =n_ (x) oM (1-v%) (¢ /m) 3/25-C* (6)

The solution of equation (4) is:
£=£,8(C,-My) +£.8 (My-C,) , (7)

where 0 is the Heaviside step function, and f: are chosen to

be Maxwellian distributions.

f,=n,(a,/m)*2e” ¢ g =q,. (8)

i

Here V, is y-dependent parameter determined by the

+
requirement that f satisfy a suitable number of (lowest—order)

moment of the governing equation. The predictions of this
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method for plane Couette flow in the absence of external force
are discussed elsewhere |11],|1] and [12].

The solution (7) is discontimous, not at C‘y=0, but at CY=MY.

It is therefore necessary to approximate f by the above
distribution function,

The further approximation of linearizing about the
zero—-shear solution (6), so that f, may be written as:

f,=f19]1+2C,V,.(¥) | (9)
or
£,=£ 1420V, + (y) 0 (C,-My) +V,- () 8 (My-C) }|.

In our problem, one wants to predict the flow velocity V and

pressure deviator (shear stress) Py where

1
V-;fvxfdv, ( 10)

Py {mv v fdv, (1)
Equations (10),(11) and (9) give:
V=(1/2/a)) {V,.+V,-) + (V,--V,.) er £ (MY} },

and

n,(x)e™

pep) 2T Ny v,
VR

where P, is the scalar pressure taken at either wall, and erf

denotes the usual error function.

Predictions for V,. are obtained by using equation (2)

after transform to moments equation in the form:
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J ~. 0 _ ob; -~
" f cd Ede f c,¢,£dc Mf c},fa—cx de
ifC,r R aa=b [o, (£ £) . (12)
J’
If we put ¢,=C,,9,=C,C, respectively, we get two moment

equations:
1 dn, (x) . oMy

(V,o=V,.) = 28 | (V. +V,-) 4

n,(x) dx JE dy J‘E
+{V,-~V,.) erf£(My) |, (13)
and

d,;f'em IR (v, Ve ere(my) - L ov) (v, v,

% (V= V) . ( 14)

By using separation method, we get:
1 dn, (x)

= - = kx
ST e ke (%) Do, (15)

where K and D are constants,

e v’ 4 (

T Ve = VetV + (Vv ) ez () [+ K v 9

and

4{1_17 FC; | (Vyeyy ) + (Ve V,) ez £ (My) |-

__9'_|% (V-V} . ( 17)

The last two equations may be reduced to :
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d?(v, -'on) a 2,2
— X X Ay-— (V. .+V ) (V. .-V .)=cye¥ ",
a5 Aydy(,+,)(x ) =Cye (18)
(Vi-=V,) =28 €M [ (V4 V,.) +(V,--V,.) e £ (My) |+K/Re™*, (19)
2
where a=3  p.48 4 coamrk/E.
Ve Vr

3.BOUNDARY CONDITIONS

The half-range nature of the expansion is away of
incorporating into a polynomial expansion the discontinuity of
the distribution function in velocity space which ordinary
occurs at the boundaries y=21/2. The boundary condition for
the single component of charged particles is different but
physically simpler than those suggested ( Shidovisky 1967) |1]
for ordinary two component fully ionized charged particles in
that fraction € of the electrons hitting a surface leave that
surface with Maxwellian Velocity distribution characteristic
of that surfaces velocity and temperature. The remaining (1-e)
are assumed to undergo specular reflection.

The boundary conditions are:
BLMy—C})fl=(l-e)0(C}-My)fﬂ+eB(My—C})f }

(20
8(C,-My) £,=(1-€)0(My-C,) £.+eB (C, -My) £;. )

where

fgo=n,(x) e M 1L¥) (g _[p)3/2g-IC /LR
“lo-iM 2
f3'=na(x) o M {1-y%) (“o/n)a/:e |c- (M//2) 1] ,

where 1 is a unit vector in the +x direction and M'=/aw is

the flow Mach number, where M'<{ <.



Delta J. Sci. 17 (3) 1993 30
M. Abdel-Aty Mohmoud

Multiplying both sides in equations (20) by ¢, then:

Ve-(1/2)1+erf(M/2)}=(1-€) V, . (-1/2){1-erf(-M/2)}
+i;£{1+erf(M/2)},

Ve (-1/2){1~erf(M/2)}=(1-€) V- (+1/2) {1 +erf M/2)}

w%,{l—erf(—M/zz)},

By solving the last two equations together we get:

V. (- & M
w(71/2) = (2-€) 2,' (21)
1/ = e c—
x(1/2) = (2-e) 27

4 .METHOD OF SOLUTION
Solving eq.s (18) and (19) under the boundary conditions
(21), by using the series method for M5 << 1, we get:

_,szz

Vx-=f~46 |ao(DY+—§Y3+—1—%y5)+a1(1+-§y2+—2‘%y‘)—
~-—£§§}ﬂ—3Hyz~5Fy‘|+l/2 (1-erf My) [ao(1+i23y2+_2.*§;.y4+
+ 750 o) +a, (y+%y3+—i%3—y5) -ﬁgrig—y—HyLFysl-kg

( 22}
Vx.=%‘:{-z—|ao(Dy+-gy3+_l_§Ey5} +a1(1+%y2+§%y4) -
—w(—s-f-?—q)--3Hy2-5Fy‘|-1/2 (1+erf My) |ao(1+£2)y2+-§%y4+
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G J 5 (6H+C> 3 5 kJ/n
— e = o Hy - -
Yoot (y+ y+120y) T Y-Hy FVI—E“
( 23)
where
pe_ 1 = CM* (6A+B) +10CM*
2(6A+B) ' (4A+B) (6A+B) '

D=(A+B) , E=(A+B) (3A+B),
G=(A+B) (3A+B) (SA+B) , I=(2A+B) ,J=(2A+B) (4A+B),

Y-
3 - {(D/4+E/96+G/120X64)
+{1-orf M/2) (1+D/8+E/24x16+G/720X64)},

a,=eM'/ (2-€) / £

and

e-M/4 (/445 F/16+ (6H+C) / T)
'“”‘(1+I/9+J/24X16) +8 (1-erf M/2) (1+I/24+J/12CX1E)

3(1-erf M/2) (H/4+F/16+ (6H+C) /I) +K/%

e ™M/ (14+T/8+T/24X16) +8 (L-erf M/2) (1+I/24+J/120X16)

S. DISCUSSION OF RESULTS

From the above results we get the macroscopic velocity
V of the flow in the form:

_Nz 2

J
V=S la,(Dy+ 2y s 2-y®) +a, (1+—y += vt
4./ 120 24
Ve (24)
_M_3Hyﬂ_5fy4-}cﬁeﬂ‘y’|'
I

the shear stress b, in the form :
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-M2
D E G
P =-P_|n (x) £ a, (1+=y2+ = yds 2 y6)s
=~ Pol, JT Ha, 2 24 720 )
I. 3 ys {(6H+() 3 5
+a + + ~-Hv3- . 5
Ay =7 120 )+ ==y =Hy Fys| (25)

and one may wish to describe the relation between shear stress
(28) and flow velocity (24) in terms of phenomenological
coefficient of viscosity B, specified so as to be meaningful
even in the Knudsen regime, In the present problem, a suitable

definition of the viscosity is:

——_P ( ) -1 i e,
n_ (x)e™ G
w=p {70777 7 14-_‘ == v — 5}{-
of N a1y 24 “7207
+a, (y+£y —_ lgO v>) -LGH;—QY-H}?E‘-.FYSI/

e
A { a, (D _..y yv4ra (I +-«-- 3) ~6Hy-20Fy?
46,/a | ’ 24 LETgY g |

o

-2 M2 £ y> L2, J e
M?y|a,(Dy+ y+120 Yra (e 2 yPe2y)
B (6HI+C) ~3Hy?-5Fy*t|) ( 26)

The situation here is a2 matter of proper condition that
are imposed at the boundaries. We shall discuss the dependence
ol the flow velocity function, shear stress and coefficient of
viscosity on magnetic field, degree of rarefaction and
reflection coefficient.

(i) For the absence of a magnetic Mach number M=0 and for
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arbitrary degree of rarefaction, the nondimensional

velocity, shear stress and viscosity coefficient are given

by:
1 / B? B3
V= a, (By+—y3+-——y>} +a 1+—— -k/x
46\/._010(y6y —5Y ) +ay ( y+ y) V|,
2 3 2
P =-P y2+e By, BT o6 B B s
o= 2 lad Yroar teEY ) +ar (y+ y RETTEAL
and
n,(x) B2 B3 B
=p o -~ 4 = 3
p=P,| llas(1+ y+24y 557 a1<y+6Y 120y)l/
a (B+u*<y +———y‘)+a (BY+———Y')
Y 1 ’
where
/_ eM!/ (2-e)
ao_ 32 B3
B/4+B2/96+B3/120x64) + l+ +
( / / / )+ 8 24x16 720x64)
and
al= k/%

(1+B/8+B%/24X16) +8 (1+B/24+B%/120X16)

(ii) For the very dilute gas, K, ---o{(8---+0) and in the

absence of a magnetic Mach number, the nondimensional
velocity is given by:
Vs (y)

=0w V=cogtant =
%

o

(iii) For the very dense gas, the continuous gas , K =0 (§-)

and in the absence of a magnetic Mach number , the flow
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velocity rate in either half space y<0

>
OVE(Y) _g(y)-9(-3) , by integrating
dy
V(y)=y+v,.

This shows that the flow velocity is linear.
Cases(ii),(iil) agree respectively with the zeroth
approximation-the Kundsen collisionless gas—and the first
approximation—the Navier Stokes equations—of the hydrodynamic
equations for hard sphere model in a centinuous gas derived
{from Boltzmann egquation.
6. CONCLUSIONS

From evaluation of the above formula (24) and (25) we
obtain the following results shown in figures |1-5|,for the

parameters @,=0.17 ,k=-.001, P, =100 Torr and
ﬂo(x)=2.68699x1019 cm™3.

(1) The flow velocity of the gas increases when the distance
y increase for constant degree of rarefaction & ,
reflection coefficient € and a magnetic Mach number M, and
it decreases as the degree of rarefaction & increase for
constant y, M and € as can be seen from figure |l|.

(ii) The magnitude of flow velocily increases as the increase

of reflection coefficient e for constant y and M , and
it increases as y increases for constant 8 and M as
shown in figure |2].

(ii1) The flow velocity V increases when the magnetic Mach

number M decreases for constant 8,€ and y, and V
decreases when it reaches to the two surfaces for

constant Mach number M and ¢ , as it seen from figure
131
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(iv} The magnitude of pressure P,, increases as the increase

of a magnetic Mach number M for constant v . € and 6 ,
and it increases with the increase of v for constan( M, e
and &, as can be seen from figure |4].

(v) The pressure P, increases when the reflection coefficient
¢ increases for constant y , M and 6, and ny increases

when it reaches to the two surfaces for constant M, € andd

as can be seen from figure |S].
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