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ABSTRACT

Plane steady couette flow problem
ef rarefied gas law at Mach number is
studied in the presence of constant
magnetic field and porosity. The
reflection coefficient of the upper aud
lower walls are considered different. The
B.G.K. kinetic model has been solved
using the moment method with two sided
distribution function. The dependence of
flow wvelocity, slip velocity, shear
stress and coefficient of viscosity on
reflection coefficient 1is obtained.We
shell neglect electric fields arising
from the distribution of charged
particles and induced magnetic fields.

INTRODUCTION

The flow between two parallel infinite plates
or concentric cylinders in relative tangential
motion is called couette flow preblem. Actually,
one of the motives for studying the couette flow is
the usefulnmess in studying boundary layer: it is
sufficiently similar and considerably easier to
solve, In the last few yvears, many investigators

have been succeeded in obtaining approximate
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solutions for the plane couette flow of natural
rarefied gas, which is suitable for any knudsen
number,

The theory of interaction between gases and
solid surfaces is far from being in final stage.
Many authors such as (Shidlovskiy 1967),( Kogan
1969), (Chapman & Cowling 1970), ( Khidr, 1970),
(Cercignani 197S), (Hady 1976), ( Johnson 1982),
(Mahmoud 1985) made successful demonstrations of
the gas flow using Boltzmann kinetic equation,
specially in the study of Couette compressible flow
between two so0lid parallel walls. Various models
have been suggested, but the simplest of them takes
the gas-surface interaction in the form of a
tangential accommodation coefficient with respect
to momentum. Different efforts were done for
imposing thes conditions at the boundaries, however
they were not enough in describing a variety of
phenomena that demand further predictions.

In the works of (Hady 1976), Mahmoud (1985)
and Abourabia (1988) the equations of transfer were
used to describe the problem of Couette flow in
rarefied gases with perosity, they open a large
area of study to follow this effect.
2.SETTING UP THE PROBLEM

In this paper steady Couette compressible
flow between two parallel plates of the gas
consists of charged particles moving under constant

magnetic field whose components are ( 0,0,B, ) and

with porosity is discussed. We consider also that
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the reflection coefficients of the upper and lower

walls are different. A
For simplicity it will be assumed that the

flow is gentle i.e the Mach number sufficiently

small such that

M1, M=fa.U,

where e,={2RT})™1,T is the constant temperature at

the walls, U/2 (-U/2) is the velocity of the upper
{(lower) wall in the x-direction, d is the distance
between the walls and y=d/2(-d/2) is the equation
of the upper (lower wall). As well known one of the
important factors to investigate the effect of
porosity 1s the gas flows out from the lower and

upper walls with velocities V,=al and
V,=b U ,a<0 , b>0.

The relevant Boltzmann equation governing the
present problem is

of ‘2 (5 o Of oo Of

ya oyac oxac) =I(f) (1)

where I(f) is the usual Boltzmann collision
operator. Because shear is assumed to be weak, 1t
is reasonable to linearize the number density
distribution function f about the zero-shear
maxwellian:

£ =n(a,/n)3expl-a, C? (2)

where n 1s the constant density number.
To obtain an approximate kinetic-theory solution to

eq. (1) one may use the B.G.K equation with which a
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a molecule tends to relax to local equilibrium

after a single collision. Thus

of e of
Cy 9z +2 (B,c,,ac : xac,) -1(£)- LR £ - (3)

i.e. the processes of transfer of molecular quan-
tities depend appreciably on the mean free path L.
Eq. (3) 1is nonlinear integrodifferential
equation, there are many method for solving it.
During the paper we look for a solution of eq. (3)
by the approximation method of (Liu & lees 1961).
The method starts by replacing the exact
distribution function by a two stream Maxwellian.
Then we use the moments method to solve eq. (3).
Multiplying both sides of equation (3) by

¢1(5) and integrating over all values of C we get

for ¢1(C-I‘)

d 351 . eB, o,
d_y‘aﬁi’ ‘“3e,) T ‘%3,

(4)
=@’f¢r(fo-f) dt

where, for any function of velocity 55(5) we have

'o';=]‘ j‘ ]ij'ddeCydCz*-] j ]ij*dcxdcydcz
‘o d oo .

and f* is chosen to be:

£ =n(a,/®)¥%(1+V,C,/RT) exp-a, [ (C,-V,,) 2+Ch+C2] : €, <0 (s)
f*=n(a,/n)3?(1+V,C,/RT) exp-a, [ (C,-V,;) 3+Co+CE1 1 C>0
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Here V.V, are y-dependent parameters determined

by *.c¢ requirement that f satisfies a suitable
number of (lower order) moment of the governing

equations.
In this paper, we are going to predict the flow
velocity function, shear stress and coefficient of
viscosity.
3.THE_BOUNDARY CONDITIONS

The boundary conditions on each V_, andV,

are obtained from the assumption that a fraction®,

of molecules is re—-emitted with a Maxwellian

distribution, (1-8,) is reflected specularly from
the lower plate, that a fraction 0, of molecules is

re-emitted with a Maxwellian distribution, and

(1-6,) is reflected specularly from the upper plate.

Using functions (4), it is desired to integrate two

equations of the form,

£r=(1-8, ;) £748, o fs
with respect to C,. where
fgj=n(“o/“)3/2[1+VL2C}/RT19XEﬂ-mO[(C}1072)2+Cﬁ+cﬁj}

Hence we obtain at the lower wall in nondimensional
form _
Vy (-1/2)={(1-8,) 8v,,(1/2) -8,/2 (6)
and at the upper wall

V., (1/2) =(1-8,) SV, (-1/2) +8,/2 (7}

where v and both Vi ,,V, , are nondimensionalized
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with respect to d and U respectively.

The suction factor S is equal to

S=(1/2+yb/®) (1/2-ya/n)?

where 7=—q 2%

5 BT is the same order of Mach number.

The solution of the system of equations (6),(7) are
obtained in terms of the arbitrary coefficients

8,,08, and S as follows;

V,,(-1/2)=[0,(1-0,) 5-8,]1 [2(0,+0,-6,8,)1 (8)
Ve (1/2) =[8,5-(1-8,)0,] {25(0,+0,-0,0,) ] (9)
4 . THE _CHARACTERISTICS QF THE FLOW

In this section the determination of V,, and V,,
are obtained by putting
$,=C, , $,=C,C, in eq. (4)
when ¢,=C,eq. (4) becomes in the following

nondimensional form

d—‘; [ (Vg-Vyp) +Y (@V,,-bV,,) 1 =y (a-b) (10)

when ¢,=C,C,, eq. (4) becomes in the nondimensional

form

% [1/2 (Vg # Vi) - (@ +DV,5) 1 +
+-E“Yi (V:1+V:z) :?_%Yi (aVild-szxz) +J§tﬁ {a+b)
T

=‘6 [(VXZ_VXJ.) +Y(avn"bvx2)] ( 1]-)
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eB,d

h =
where PB 7

is a constant related to magnetic

d
L/x

field, and &=

is the degree of rarefaction.

We shall solve eq.s (10) and (11} by using the
me thod of small parameter. Consideringy
sufficiently small such that y2<<1, we seck the

solution in the form

Veg=Vil +YVal

On substituting these values in ¢q.s(10), {11) and
equating the terms free of ¥ on both sides of these
equations, we get ¢two equations by solving it
simultanecusly using the boundary conditions,  we
obtain:

V,ﬁf’=—6€1y+ca—~%- . (12}
v§;’=—ac1y+03+.92.1. , (13)
where

“=3 (1—6)(6(3:?2281-8183) : (14
¢, (6,-9,) (1-0,-8,)

16 (9, +8,-0,0,) (13)

Then equating the coefficients of ¥ on both sides

we have ;
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Vi == 2 (a-b) Bya- 11222 (Baacy) by (3cy0p) {220y

[ 2{a+b)+x (a-b)

[ 2{a-b)+xn (a+b) 1
2%

e 16,46 -= ¢, (16)

]C3"'

V£)=_"g" (a-b) Py?+ [%'_{")_ (8C,+P) __(a;'_b) (B+8C,) -8C, 1y

. (a+b)2—: (a-b) 10,418 (a+b)4—112 (a-b) C-1,‘0“,,_1.(:2 (17

where

¢,={{a-b) cel~e§+e§)]}[en(el+ez-elez,]-1_{ﬁ;ﬂ]q

+[B(a-b) (8-2) /8] +[(a-b) (2-%8) /4x]C, (18)
and

¢,={(a-b) (20,-8,-02+8%)}[4n (1-8) (8,+6,-8,0,) ]

+[B(a+h) /n (8-1)]1+[(a+h) (28+m) /2R {(8-1)]1C

~[(a-b) /(8-1)1C, ( 19)
s.DISCUSSTON OF THE RESULTS

From the above results we get the macroscopic

velacity V* of the flow form:
_(m+2ya) ,_ _1 (m+2yb) ,_ 1
V= o (-8C,y+C 3C1)+ o= ( 6C1y+ca+~é—cl)+

+32!- [~8 (a~b) Py?+(8C,+P) (a-b) y~-28C,y+ 2(aﬂ+b) e,

- (a;b) C,+2C,] ( 20)

The normal velocity of the flow is

V== (a+b) ( 21)
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The shear stress EW is in the form:
cC
Pry=3 (a-b) cl+_Y_(§i.9)_{-a C; (a-b) y+ (a-b) G2 (a+b))

(a-b)
4

+

YLC+p) (a-B y-(a-b) G+ 2Pl cu)  (22)

and the coefficient of viscosity is in the form:

- C.
peldazb) ¢, 1(3D) [ gc, (a-p) y+ (a-b) ;-2 (asb)]

+___l(a‘:’) [(8C,+B) (a-b) y-(a-b) Cy+ (a;b) GGl

8¢, e PR
/szg—(u+27a) o (ﬂ+2Yb)+-2[ 28B(a-b)y
+(8C,+P) (@a-b) ~28C,1} (23)

The situation studied here is a matter of
proper condition that are imposed at the
boundaries. We shall discuss the dependence of the
flow velocity function, shear and coefficient of
viscosity on the normal wvelocity, degree of
rarefaction, magnetic field and reflection
coefficient. We have the following cases;

(i)For non porous plates, for arbitrary degree of
rarefaction & , the nondimensionless velocity
and shear stress are given by:

V= -6 C1y+ Ca

P,,=0
(ii) For porous plates and free molecular flow K, ~e

(when the collision may be meglected 8=0) the
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dimensionless slip velocity and shear stress
are given by:

Ve=1/2-V(1/2)

(8,-8,) (2-8,-6,) _y(a-b) (01+63)
4(8,+6,-0.8,) 4% (6,+0,-0.68,)
) y{a+b) (86,-46,-56%+07)
4% (6,+0,-0,8,) ’

=1
2

2 2
ny=[7;1“ (a-b)-La-B) 7y, (ai-b7) (61 +63)

ar s 1 378,+6,20.8,)

y(a3-b?) _(a-b)2y, (8,-8,) (2-08,-8,) p(a-b)?
+{ T 3 ] 278,+6,-6,8,) + 1 Yy

Lla-bly | (a+b) (0,-0,-61+63) B (a+b) _ (a+b) (61+63)
4 = (0,+6,-6, ) x 219,+9,-6.9,)
(a-b) (8,-8,) (2-6,-8,)
2(6,+0,-6,0,6,)

-+

(iii) For porous plates, continuous gas, K, ~0 (when

8-+») and in the absence of magnetic field the

non-dimensional slip velocity and shear

stress are given by:

vo=l_ply_1_y(a+h (8,+0,-01-62) (8,-0,) (2-8,-8,)
"3 2" 2 = (6,+6,-9,6,) 4(8,+0,-8,0,)

P =yl (a?-b?) _ (a-b)?, (6,-8,) (2-6,-8,)
¥ 2% 4 4(8,+0,-0,0,)
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(iv) For porous plates and for any 8, the slip

velocity at the upper plate is given by:

Vf% +£‘—%Y—a)— (8¢ +C-2C,) -—(’%ﬂ (-8C,+Cy+2C,) +

+ 288 (2-p) - X (8G,+p) (a-b) +Lc,-1lah) o
* (g;b) C-vC, (24)

(v) In the absence of porosity and magnetic field
we have two limiting cases arise:

(1) The very dilute gas K,~«(8-0) eq. (20) gives
V/(¥)=V,. where V, is an arbitrary constant.

(2)The very dense gas, the continuous gas,

K, ~0(8-) gives from eq. (20) ¥ﬂ(y)=y+V;.

This shows that the flow velocity is linear.
The cases(1),(2) agree respectively with the
Zeroth-approximation—-the knudsen collissionless
gas-and the first approximation— the Navier stokes
equations of the hydrodynamic equations for hard
sphere model in a continuous gas derived erom the
Boltzmann equation.
6. CONCLUSIONS

The values of velocity, shear stress and slip
velocity are calculated from formula (20),(22) and
(24) when the parameters take the following values

and for different value of 6,,8,. The results are

given in Figures (1-9), these results gives:

1. (i) If the reflection coefficient is the same



Delta J. Sci. 17 (3) 1993
STEADY COUETTE FLOW OF A RAREFIED GAS

0,=0,=0, the slip velocity at the upper plate vg(%%)

increases as 8 increases for any degree of
rarefaction 8, and it increases with the
increase of 8 for any constant 8,as it may

be shown in Fig. (1)

(ii) From Fig.(2) we see that the slip velocity

increases as the difference between the
reflection coefficient of the two plates

(0=0,-8,) increcases for any constant 8, and it

increases with the increase with the increase

of 8 for any constant 9.

{iii) The slip velocity increases as the increase

]

of the ratio a/b for constant & and @, and it
increases with the incrcase of 8 for
constant a/b and 8, as it may be showun in
Fig.(3).

(1)If the reflection coefficient is the same

(6,=0,<8) , the magnitudc of shear stress r,,
increases as ® increases for any constant y,
and it decreases as y increases for any

constant 8 [sce Fig. 4].

(ii) From Fig.(5), we see that the magnitude of

shcar stress increases as the increase of &
for constant y and @, and it decrcases with
the increase of y from the lower plate for

constant 8 and ©.

(iii) The magnitude of shear stress P, decreases as

the incrcase of the ratio a/b for constant y
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and 0, and it decreases with the increase of
y for constant a/b and €. as it may be shown
in Fig. (6)}.

3.(i) If the reflection coefficient is the same

(0,=68,=6), the magnitude of the flow velocity

V' increases with the increase of 0 for
constant y, and it decreases with the
increase of y from the lower plate for
constant O, as it may be shown in Fig.(7).
(i1) From Fig. [8], we see that the magnitude of
flow velocity increases as & increases for any

constant y and it decreases as y increases for
any constant & and 8.

(1ii) The magnitude of flow velocity decreases as
the increase of y for constant a/b and it
increases with the increasa of a/b for
constant v and €, see Tig.(9).

FIGURG CAPTIONS:

Fig. (1)~The relaticn between the slip velocityVg

and the degree of rarefaction & for the same values

of 6,,8,, and P (constant related to the magnetic
field)=0.001.

Fig. (2)-The relation between the slip velocityVyg

and the degree of rarefaction 6 for different

values of 0,8, (reflection Coefficients) and

B=0.00t.

Fig. (3)-The relation between the slip velocityV,

and & for different wvalues of a/b (ratio of
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suction), $=0.001 and 6,=0,-0.8°

Fig. (4)-The relation between the shear stressP,
and the distance v for the same values of
6,,0,,6=0.4 and $=0.001.

Fig. (5)- The relation between the shear stressP,‘y
and the distance y for different values of
3 ,p=0.001 and 0,=6,=0,5.

Fig. (6)— The relation between the shear stressP,
and the distance y for different values of a/b ,
5=0.5, p=0.001 and 0,=0,=0.5.

Fig. (¢)- The rvelation between the flow velocity V'
and distance y for the same values 6,,0,,$=0.001 and
6=0.5

Fig. (8)- The relation between the flow velocity V'

and the distance y for different values of
5,$=0.001 and 8,=0,=0.5.

Fig. (9)- The relation between the flow velocity V'
and the distance v for different values of a/b,
$=0.001,8=0.5 and 6,=0,=0.5.
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