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ABSTRACT

This paper gives a criterion for the
existence and the uniqueness of solutions to
three~point boundary value problem associated
with a third order differential eguation. Also,
we have constructed as approximate solution by a
quartic spline function.

1. INTRODUCTION

The study of three-point boundary value problems is an
interesting area of current research and a great deal of work
has been done by many authors in the recent years
{3.5,7,8,10].

This paper gives a guarentee for the existence and the
uniqueness of solutions of three-point boundary value problems
associated with the differential equation.

Yy =Fx 5, ¥, 7"

Here the Larry Schauder fixed point theorem [4] is
used to prove the existence of a solution, while a separate
uniqueness theorem is proved by using the Lipschitz condition.

The solution of boundary value prolems as a rule is not
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found in closed form, then the methods for their approximate
scolution assumes a great importance. The present paper
proposes and efficient method for finding an approximate
solution in the form of a spline function of Fourth degree of
a boundary value problem for the differential equations in the
form

YOUU) + £(x) ¥+ g(x) ¥+ r(X)Y = p(X)
the idea of using spline-functions for an approximate of
boundary value problems for differential equations has been
applied in a number of researches for instance [1,2,9,11].
2. Existence:

Consider the boundary value problem

Ylll(x) - F(x' Yl yll yl!) (1)
subjected to either boundary conditions

¥(x) =y . y(xz) =Y, y'(x) = m (2)
or

Y(xl) =Y, Y&)=n , ¥(x) = ¥, (3)

The boundary conditions (2) and (3) can be matched ({5] to
yleld a unique solution of (1) satisfying the boundary
condition

y(x) =y ., yx)y, .y =y, (4)
The discussion for the boundary condition (2) is analogous to
that of (3), we concentrate on (3). If (1) has a solution
satisfying the boundary condition (3), then.

x?

y(x)=[g(x,s) Fls,y(s),y'(8),y"(s))ds
X3

Where g(x,s) 138 the Green's function
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g{x,8)=

In the expression for g(x,s), a=x, . b=x3. Thus we define an
operator T on c ([xﬂ, x]) by

Xy
y(x)=[g(x, 8) Fs,y(8) ,y'(8) ,y"(5)) ds

1f y(x) € ¢ [ X, %, 1, the norm 1s defined by

ly (x) l,=max(sup|y(x) |, suply (x) ],

¥
55 £ suply {x) I)

where sach supremum is taken over the interval [x2 . x3] ,
Theorem (1): Let F(x,y.z,e) be a continuous function in the
following domain D:

D = [a,b] lexgszS
where

Q=i Ry, =dqzlzl (R g =(e:lel R}
Furthermors, let F(x,Y.2,8) be bounded in D, s0 that there
exists a constant M, such that
F(x, v, 2z, # )] <1t (5)
where
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B1R, 6K 3R, ()

] { ] F
M e (bea)? ZT(hog)

Then, there exists a solution y(x) to equation (1) satisfying
(2) or 3) andl yO | <R,y @l <R LIy | < R, .
Proof: Let E be the Banach space of continuously
differentiable function h(x) (asxsb) with the norm.

[h(x) lp=max { f‘l:‘.gm (x) |, -2%- (b—a)f‘gg,Uz’(x) |,

1 (a2 n
55 (b-a) f‘gglh (x) |}

Consider the sphere

S= {h(x) : | (20) I < ﬁ%-a_)a} of B

Define the operator T on § as follows

b
Th(x) =f g(x,8) P(g,h(x),h'(s),h"(8)) dg

put y(x) = Th(x), a<xsb, then y(x), y'(x), and ¥'(x) are
cotinuous functionsof x. From (5) and (6), the function y"(x),
is also continubus and its supermum satisfies the condition
suply''"(x))] ¢ H
asxsb
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Let h(x) € 8, then we have

2M {b-a)?

b
M ' 4 ;
Max ly(x)| < M[Ig(x s) |ds o1

b
Max| y'(x) lsuf jg.(x, 8) Idss—}!-(-égﬂ—’-;
) a
and
b
max | y/(x) |< f | 9. (%, 8)dss 2—”“;:9-)-
a

So that T maps S into itself. Let h (x), h (x) € S, then

Vi) -y, () | < 2L08) f|1=-(s by, b, b)
-F(s.b,.h,.h,> |ds

Since F(x,y,z,e) is continuous, it follows that

i Y, (%) -y, (%) | < 0 provided that | b, (x) = h(x) | ~o.
Thus T is a continuous operator. For any y(x) in the range of
T, ¥(x) = (Th) (%) for some function h(x), we have | y"'(x)
i N, asxtb

(@) -y (p) |« 2iBza)” (g

I/ (e) -y (B)] < 2—M(’;ﬂ)-lﬁﬁ-ﬁl



24

Delta J. Sci. 16 (3) 1992

ly“(a)-y"*(B)| < Mja-B{; where «,p e[a,b]

Then the set of functions y(x) in the rage of T are such that
Y{x), ¥'(x) and y"(x) are bounded and continuous.

Using Ascoli-Arzela’'s theorem [4], we conclude that the
range of T has a compact closure, Hence Schauder theorem is
applicable and T has a fixed point y(x) = Ty(x).

3. Uniqueness Theorem {2):
Let the function F(x, v, y¥'.¥") be continuous on

{}{i , ‘x3} X Ra, and it also satisfy the Lipschitz condition.
VP (X, ¥, 200 W) ~F{X: Vg0 Zg0Wy) |

$(0, ]y, -y, |40, |2, ~2,[+6; |w, ~w, |}

Further, it is assumed that

20 8.h? 20

where hi = Xy~ xi , i=1,2
Proof: We may prove the uniqueness of the solution of equation
(1) subjected to (3). Suppose that u(x) and v(x) are two

distinct solutions of (1) satisfying (3) such that

Xy
u(x) -f gix,8) P(s,u,u’,u"y ds
x
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Xy

wm=wammﬂW)$
x

Since F(x,y.,y'.y") satisfles Lipschitz condition, then by
using Theorem (1) we obtain

20 h; . e,h;

26,h,
81 —*t—3 ) ju(x) -vi{x) |

fu)-vix)] < (

1t 26_h) 0.h7 0
ahz_'_ 1h2+22h2

81 6 3
Ju(x)-vix)]~ 0

< 1, then

i.e. uwx) = vix).
Similarly, unigueness of solution of (1) subjected to (2) can
be proved

From Theorem (2) it is seen that if (7) holds, then the
hypothesis (i) of Theorems (2.1) and (2.2) in [3] is
satisfied. Hence we have
Theorem (3):

Let F(x,y.¥',¥") be a continuous function satisfying
Lipschitz condition. 1f hi (1 =1,2) satisfies (7), then the
differential eguation (1) subjected to (4) has a unique
solution.

4. Quartic spline approximation to a three-point boundary
value problem for the differential equation
YUH(x) + £(x) y'(x) + g(x)Y' + r(x)y = p(X)
The quartic spline Sj(x) interpolating to the function
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y(x) at the knots x, = X, +jh (J =90,1,.., n) is given in the

interval xj_1 ¢ x < X, by the equation.

—-x) 4 -
(x4-%) . (x-x4_,)* .
24h 7 24h

h3 h’
243“)(—1——)4»% S M ¢

Sj (X) =Mj 1

XXy 1y

(Yj_i

,.E__v;n

q
Aoy

®

where I‘Ij = §"'(x,} and yj = y(x}), Hence

j

h3 hZ :.J,.r.*il.,'-y. )
Sy (Xy) = S5 My- S My, 4 ped (9
j=01 1‘ . 0y n'—l

and

_ Rt h? Yy-¥y4a (10}
Byt = gyt g o T
j=1,2,
So that the continuity of first derivatives implies
h? h’ V3.172¥ 3%V 51
FYREa 24”1*1 h ’
J=1‘ 2' . ' _1

If we are given the differential equation

y'' o+ £(X)y" + g(x)Y' + r(x)y = p(X)
Subjected to the boundary condition
y(@) =€, y(®) =¢ . y{) =C

(8}

(11)

(12)

(13)

The approximate solution of (12) in the interval {a,p], is
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analogous the approximate solution in the interval [B,y] , so
ve found the approximate solution in [a,p].
Let the interval [a,p] be divided into n equal

subintervals (x,  , % j) where xj = a + jh, j=o0,1,..,n,

X = f, and h= gia/n , then the requirement that the spline
approximation should satisfy the differential equation (12) at
the knots xj (j= 0,1,..,n) leads, on using equations (9) and
(10) to a set of relationships from which we can eliminate the
unknowns nn ’Hl""nn' The result, in conjunction with the
boundary conditions (13) (in the interval [«,B]), is a set of
tri-diagonal equations for the determination of Yor ¥po oo yﬂ.

The spline approximation to equation (12), in which case
the differential equation gives on using equations (9) and

(10).

h hZ h?
M, (1'*-5 fj-—é-'gj) '-ﬂgj%u‘

qg (14)
Pj‘“rjyi“-‘h'z (¥3.2-¥3) .
j=0,1,..,n-1
and
A h? h
Mj(l‘fa-fj* B g;) +'ngMj-1‘=
(15)

g
Pj‘-erj“}‘]i (¥Vy~¥jia)
j=1,2,..,n

Equations (14) and (15) constitute 2n equations in the 2n+2
unknowns uu, nl, v Hn’ and Yoo Ypooen s Y, Elemination of
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Hj leads directly to n-1 equations for the unknowns Y, to Y,
which, together with the two boundary conditions, are
sufficient for their determination. We note that equations
{14) and (15) imply the relations (11).

Addition of equations (14) and i3 givesx  The
relationship

hz

= +2(1+£f)yﬂ_h_3. M, .=
24 ngJ'l 2 1T 2y Gy

g (16)
2(py~I3yy) *'71'1 {(¥ji17Yye)

j=1,2,..,n-1

and eliamination of Hjbetween this equation and equation {11)
yields

h3 h? h3 h3 h3
."-2'-4— (2+bfj“—4—gj)Mjﬂ1+-§-—£ (2+hfj+ng)Mj*l+'_2Hpj_

F 3
3=1,2,..,0-1 (v

But an explicit expression can be obtained for lf[jq1 in terms of

le and Yj by eliminating nj between equation (14) (with j

replaced by j-1) and equation (15), namely
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h h?
A= QS L5 99 (PraYyaTya~

g,.
=4 yymysad)+ (18)

Rl gy .
79 BTy s b

I=i, 4,

where

h h?
Aj: (..L"‘Efj -1~

h h?
8 g o) By i g et (19)
(———) 93954
Similarly M j# can be obtained in terms of y o

equations (14) and equation (15) (with j replaced by j+1)' the

and Yj from

resulting expression being.

h h?
BiMyyy= (145 £4-=-gy)

L2 N :
(ijl_rjvi_rjolyjtl-“j_l (YJ.]_"_YJ‘) ) (20)

24 gjol(Pj Ij.Vj"""— (Y_ju_ .Vj) ),

j=0,1,..,n-1

where

hz

h

gj#l) +
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Substitution of the expressions for HJ1 and nﬁl given by
equations (18) and {20) into equation (17) leads after
.straighforwvard but tedious manipulation to the final three -
term recurrence relationship for the spline approximation,
namely

2 2
Yia (1+—213fj+£8-gj) (1+-I—2fj—-£-gj)

B b
{2+hfj41+—ﬁ‘rj+1 gjﬂ.}Aj
yi(2snt,-2Brce B2 (A,gm-ngoj -1)

3 2 2
((2+hfj)2-%r1(2+hfj) __(ﬁ—gﬁ—)}*‘
2
h:l _hz
{2+hfj_1+ﬁrj_1-—3—gj_l}=
3 2 2
._{1... (1+gfj-£_gj) (1+.£fj+_{]__gj) (Aij+1+Bij-1) +

12
hs h h?
288 B.J'Pjgj -1 (1+*fj—“gj)

h2 h2
—-A_P.g,. (1+—-f +——-g ) :
2BR ol 4 151 3 3 (22)

where

n? -

Example. Consider the third order differential equation

ym(x) = 22x-10x3 + 4x2 /_ X

1/ 24-
o2 ey e” dexny L R

Subjected to the boundary conditions.
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y(0) =1, y(1) = 0.5 y(2) = 0.2 (24-b)

The function f(x,y,y'.y") will not satisfy condtions A {3,5]
in the interval (0,2). So, the resuls of Das and Lalii [5] are
not applicable to ensure the existence and the uniqueness in

this interval. But according to our rssults, the function

3y E i e 3 .
o d Y TR 944 10 . XA wwd & i
X, 3y v - i T
fl 2\% % 4 )} g S gt
Bl FY ey

continuous and Soumaed 1o Lne dosncie Boapa alas zatisafies

Lipschitz condition with the constants.

&= %1.5
max | |
oF
8, = 1
-max | yfl .
oF 1
6, =max —
Ostzl ay”l 2

Then, the copdition (7) may be reduced to the form

—_ =<1,
27 6 3 1, 1-1,2

Thus, the function F(X,y,y',y") satisfies the conditions of
the Theorems 1,2 and 3. Hence the differential equation (24)
posses a unique solution.

1f we divided the interval {0,1] into two equal subintervals,
then, from equation (19), (21), and (23).

A s 1.08, B = A 7 = 1.225069444 , C 1 2.646267187

31
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and from equation (22}, we have.
¥(0.5) = 0.700720198

Bence from equations (18) and (20), we get

The spline soclution to the differential equation (24-a) in the
interval [0,1} in given by

2.891756466

15 x442(1/2-x)+1.371321411x,
, xe(0,1/2)
S(x)=] 2.891756466 (1-3)4+ 0.356537521 (x-1/2)4+
12 12

1.371321411(1-x)+0.996286067 (x~1/2),
- xel1/2,1]

Similarly if we divide the interval [1,2] into two equal
subintervals the spline solution is given by

-

0.38898111% 0.22665869
2-x)4-
15 (3/2-x) v
0.995948113(3/2-x) +0,699612548 (x-1) ,

S(x) = xefl,3/2]

0.22665869 0-2308815
- 2— ‘u__________ -— ‘+

0.699612548(2-x) +0.402405015(x-3/2),
xel3/2,2]

(x-1)4+
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