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ABSTRACT

In this paper we give proofs concerning
estimates of the infinity norm of certain type of
matrices which are used throughout the numerical
applications to many problems. Also bounds of the
elements of the L and U of the LU decomposition
of such matrices are given. In addition, we show
how these results are useful in the numerical
applications.

15 INTRODUCTION
Diagonally dominant matrices appear frequently in many
applications of the numerical techniques to ordinary and
partial differential equations. In fact resulting systems of
equations involve always such matrices, and it is necessary
to have a measure to the size of these matrices in order to
estimate the error bounds of approximating the derivatives in

these differential equations. The maximum (infinity) norm is
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the most commonly used measure in such cases. The maximum
(infinity) norm is the most commonly used measure in such
cases. The value of this norm is to be evaluated according to
the problem, but in most physical and engineering applications
the resulting matrices use to be bounded and in many cases
tridiagonal, such as in [1}, (2], [4] and many others. Our aim
here is to find an easy way to estimate such norm by showing
that the infinity norm of these matrices is almost equal to
the Lf- Norm (which is easy to be evaluated) whenever the
dimension of the matrix becomes large. This is the case when
the stepsize of the numerical scheme is chosen small enough in
order to get certain accuracy. In our work we prove this
relation over the range of a certain type of matrices. The
relation helps in estimating error bound of the interpolating
pelynomials and their derivatives over the knot points (see
[{2], [4]). Here we concentrate on tridiagonal diagonally
dominant martices which is a common feature in numerical
applications.

2. The infinity norm of the inverse of a tridiagonal
diagonally dominant matrix.

We shall consider the following two cases:

Case 1: A Symmetric matrix A with constant elements, so first
perform the LU decomposition for A, then give some bounds of
the elements of the matrices L and I which in twrn in getting
an estimate for _|Aﬂ| . In this case, without loss of

generality, we can consider A with the elements on the two
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subdiagonals to be unity, if this is not the case a common
factor can be taken of each row of the matrix. Thus let

(k10 \
1 k1
A=|01 k1 (1)
1 k1
1 k
\ /
and A = LU
where
1 {u1 1
1, 5 u, 1
L= 13 LU= 1
I, 1 Uy,

Comparing the elements of LU and h we get the foilowing

recurrence relations for un and ln'

w,=k , ug=k- = 1_1 and
a
12=% =t ,0=3 (1) N
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consider the first of these relations

;U =k and n=2(1)N
-1

this is a fixed point iteration for the function

flu) =ud -ku+1=0

with the iteration function

I R
g(u) =k-=, (us0)

(2)

(3)

the condition of convergence is satisfied in some interval

around the root as
| g'(ui) } <1 whenever |} k | > 2

which is true since A is diagonally dominant. So the iteration

formula (2) converges to a root of f(u). Next it is useful to

determine the range of u around this root in which u

converges, this is given by the following lemma.

Lemta 1: The iteration values u.,n= 1(1)N given by relation

(2) for equation (3) satisfy

§+%Jk5-4<unsk, k2

(4)
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ksu (-—+—-J k2- d4,k<-2 (5)

proof:
Let k > 2 relation (4) can be proved by induction

u=k>=— +l\/ L

Suppose

Ups? 55 1V

>-—+-J_*_

uy=k-

Uy 4

hence the left hand side of (4) is true also it can be easily
shown that

u -u, <0

1 -1
i.e, unis monotonic decreasing, i.e. bounded above by k. Thus
inequality (4) is proved. Similarly inequality (5) can be
proved to be true, hence the proof of the lemma.
Lemma 2: The seguence In' n= 2(1)N satisfying the recurrence

relation




(@)Y
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satisfies the inequalities

=<1 2

k0 kﬂ/k’-fl
1

2 __¢lst, k<=2

k'l'\/ki -4 k

,k)2

Proof:

Since 1 u ,=1
2 !

the lemma is true from Lemma 1.

Now if we consider the system of equations

AX=Zwith|Zl. =1
ieLlY=ZandX=~Ux-——~Y, =2,
Y,=2,-1,Y,,, n=2(1)N

from which we get

8
MARER AR I

Lesma 3: IYnl as given by inequality (8) satisfies

(6)

(7)
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Y] < (k-2 + Jk3-4) /2k-4, k2,

|Y,| < (k+ 2+ /k3-4) /2k+d, k<=2

Proof

[val €1 + ol 1Yo |

$ 1+ {2,014+, |¥el))

but from lemma 1

Il < B P R
+ -

o

therefore

|yn|<1+-§ (1+%+. o)

._DP

1
1-2/p p-2

Iva)< (k-2 +ykF-2) / (2k-4)
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Similarly the second case when k < -2 can be proved.

Lemma 4: The ¥ components of the vector x satisfying
U.’E =y

satisfy the inequality

lxn|<-|-ﬁ'_—2, lk|>2,n=1(1)N

Proof:
Let k > 2, and by applying the back substitution
technique to the system of linear equations , we get

N ERIA

ad x =(y ~-x ) /u,n=N=~1 N-2,...,1

max|y,|

n
1] < minfu,]
]

-2+/ki-4
(Ic 2+yk’-4 1 from Lemmas 1,2

2k-1 7 1/2 (kayKE-2)

k-2

S0 it is true for n = N.
Forn=N-1, N-2, ..., 1 we have



Delta J. Sci. 16 (3) 1992

|¥al+ 1Xp0s |

al < minfu,
n

Suppose the inequality holds for n + 1 , thus
1
| %00 1< *-3

< Iynl+ (1/k-2)

1/2 (k+Jké-4)

EA

Using Lemma 3, we get
1
X, | <=
Ial< 225
This means that the case is true for n, i.e. the inequality is
true for all values of n. Similarly it can be proved for
k < -2, hence the proof of the Lemma.
3. The infinity norm of the inverse of a matrix A
Let
Ax=2z i.e. x T-x'1 z
where A is diagonally dominant symmetric matrix
i.e.
k  i=j
A=la)=11 |i-j|=1
0 otherwise
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also let A = LU
Thus

Y, = -1 = max P
At hn;.agtllA zl., lﬂ__ll.ed.. =3

from Lemma 2
but it is known that

1AL 2 A1,

Since 2 is symmetric

jaty, = 1

min e.v. (A)

The eigenvalues of A as glven by Smith (5] are:

A, =kl +2cos 2L, g=1(1)N

N+1'’
So
- Nr
m:l.n A, = |k| + 2cos—ﬁ+—i-
therefore
1 -1 1
X B *
|kj+2cos (Nx/N+1) 1A~ Tk[-2 (*)

Thus when N becomes sufficiently large



11

Delta J. Sci. 16 (3) 1992

A7 = 1A,

Hence the following theorem has already been proved.
Theorem: Let A be a tridiagonal symmetric diagonally dominant
matrix of order N X N, then as N becomes large, the infinity
and.ﬁ -norms for the matrix }l-1 tend to the same value i.e.

a7k, ~ 1274,

for N sufficiently large.
By expanding the cosine in (*), it can be shown that

A7 ~ a7l + 0(1/N?%)

Case II. A is nonsymmetric diagonally dominant with variable

coefficients
Let

(b ¢, )

d, b, ¢
A=
Crpy
‘iw 'bu

\ /

where

b, ¢, d,are functions of x and |bj| - { |d1| + |ci| }>o0
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IfAXx=12

Al = suplaxl.

-1

IAXI. & Ifajk Xklj = 1'2; ---,N

={dyxy 4 +byxy*CyXy,s |
2 |byey| - tdyxy, | + logx,, |}
Let - Ile:m?_xlle,

then we have established the following inequality

1A xl.. > Ey|x;|, By = |by| - Ydy|+|esl

X=A1gz
a1zl Ixl. 1
i = gup———— = 8U $ —
A7 mg izf. m-‘% laxl. m%n E,
< 1
ming,

J
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. 4 1
i 1A < mEa (1B, 1= 1 1d; [+1c; )

this last inequality gives bound on |A |
In the previous special case when

b.=k , c.=d, =1
] ] J

JA- s Tﬁ_z
which is the same result obtained in Casge I.
Also even in the worst case for the norm bound when
x = (-1,1,-1, ...)"
| 2x|, =k-2
and so
RISV EE
4- Application to two peint boundary value probleas
In this section we are not gecing in @etails but jus
adopt the work shown in [1] , [4]. '
Consider the two polnt boundary value problem
POX)Y  + )y + r(y = £(x,7(x)), x €[a,b]
y(a) = a
¥(b) =B
on applying finite difference scheme or collocation scheme L
considering the solution as o
7(x) = £, Bi(x)
1& (x) are spline functions, c, are constants leading to th
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system of equations (collocating as the grid points)
Ac = £ (c)to be solved and in which || A™ | _is needed to get

an error bound for the solution.

In case of cubic B-splines defined as :

( (x-x;.,)°
2 Xy SXSKy 4

h3+3h?(x,_, -x) +3h(x-x,,) -3 (x-x;,)3

B,(x)=-2 h243h% (Xy,,-X) +3B(Xy,,-X) *=3 (X4 -X)
11X ) f X SXSX
(sz—x)?' |

1 X g0y SXSX5 .

o :

, Other wige

For which the matrix A becomes : (a =0, B=0)
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rbuz:'c,() 0 )

0
d b ¢ 0 0
A= 0 d2 bz Cy 0

0 0 dyy bry ¢y
00 0 d, b,
\ /

-36p(x,) L 12q(x,) c = 59(%)

where b, = 2 5 G = E

6p(x,) 3g(x,) -12p(x '
d,= szx i} qb i, r(xi)-bf—-%,(—‘)- + 4r(x,),
. 6p (x;) 3q (x;)
cy= ™ i s h i+ r(x,)

i=1,2, -—-,n-1and

d = 89 (%) _ -36p (x,) _ 12q(x,)
=~ p o h? h

with h suvfficiently small, the matrix A 1is diagonally
dominant, provided that p(xi) r(xi) 0, 1=01)n.In this
case the maximum norm of the inverse matrix k'l as used in fl] ’
[4] satisfies the inequality
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A< 1

6 mJJ'!.n x|

which agrees with present work, alsc this result was used in
other work on partial differential equatiom.

DISCUSSION AND CONCLUSION

The infinity norm is the widely used for error bounds in
numerical analysis, we have shown here how to get an estimate
of this norm for the inverse of some matrices, making use of
the well known form of the L2 - norm of these matrices.
Morever it should also be noted in this work, through the
lemmas shown, that some useful properties of the matrices 1
and U (A = LU) are obtained, in addition to the bounds shown
on their elements which will help in the error analysis of

different numerical applications.
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