SOME MORE RESULTS ON FUZZY CONTINUITY

BY

A.A. Allam

Mathematics Department, Faculty of Science, Assiut University
Assiut, Egypt

Received: 27-5-1992

ABSTRACT

In this peice of work we define **-semicontinuous, Ra- semicontinuous and Ra*-semicontinuous functions as a generalization of F-semicontinuous and F-irresolute functions. By these concepts and the concept of an *-continuous functions, we improve and generalize (in fuzzy setting) some results previously obtained by Malghan and Benchalli [11,12] and Sivaraj [17].

1. INTRODUCTION

In 1978, Gantner, et al. [9] introduced the concept of \propto -compact and strong locally \propto -compact fuzzy spaces. In 1979 Gameron [8] introduced for the first the concept of I-compact spaces. In 1980 and 1984, the concept of countably \propto -compact and locally \propto -compact fuzzy spaces were introduced by Malghan and Benchalli [11,12]. In 1986 and 1987 the concepts of \propto -continuity \propto -irresolute functions and S-closed spaces were introduced by Mashhour et al. [13,15].

Delta J. Sci. 16 (1) 1992 Some More Results

Theorem A [17]. If a function $f:X \longrightarrow Y$ is irresolute and $A \subset X$ is I-compact relative to X, then f(A) is $C \subset X$ relative to Y.

Corollary B [17]. If a function $f:X \longrightarrow \Upsilon$ is irresolute, Υ is an FED-space and $A \subset X$ is I-compact relative to X, then f(A) is I-compact relative to Υ .

Corollary C [17]. If a function $f:X \longrightarrow Y$ is semiopen and semicontinuous, Y is an ED-space and ACX is I-compact relative to X, then f(A) is I-compact relative to Y.

Theorem D [11]. Let $f:X \longrightarrow Y$ be an F-continuous function. If X is countably \propto -compact, then f(X) is countably \propto -compact subspace Of Y.

Theorem E [11]. Let $f:X \longrightarrow Y$ be an F-continuous, F-open surjection. If X is locally \prec -compact, then Y is locally \prec -compact.

Corollary F [12]. Let f be an F-open, F-continous function from an fts X onto a 1*-Hausdorff fts Y such that Supp(C1(A)) = C1(Supp(A)) for each fuzzy open set A in Y. If X is strong locally \propto -compact, then so is Y.

Let S be a fuzzy subset of a fuzz, topological space (an fig., for short) (X, \mathcal{T}), we denote the closure of (resp. interior of S, semiclosure of S) with respect to \mathcal{T} by C1(S) (resp. Int(S), Sc1(S)). The family of all fuzzy semiopen (resp. fuzzy regular semiopen) sets in A are denoted by S0(X) (resp. RSO(X)).

<u>Definition 1.1</u>. A fuzzy subset S of an fts X is called:

- (i) fuzzy semiopen [2,5] if $S \leq C1(Int(S))$,
- (ii) fuzzy semiclosed [2,5] if S > Int (C1(S)),
- (iii) fuzzy preopen [7] if $S \leq Int(Cl(S))$,
- (iv) fuzzy regular open [5] if S=Int(C1(S)),
- (v) fuzzy regular-semiopen [13] if there is a fuzzy regular open set U such that U<S<C1(U).</p>

Definition 1.2 [16]. A fuzzy point x_r is said to be quasicoincident with A, denoted by x_rqA if r > A''(x) > 1. A fuzzy set A is quasi-concident with a fuzzy set B or AqB if there is x + X, A(x) + B(x) > 1. A fuzzy set A in an fts (X, \mathcal{T}) is called a Q-neighbourhood of x_r iff there is $B \in \mathcal{T}$ such that $x_rqB \leq A$.

Theorem 1.3. [16]. A fuzzy point $x_r \in C1(A)$ iff each q-neighbourhood of x_r is quasi-coincident with A.

The following Propositions have been stated in [10].

<u>Proposition 1.4.</u> (i) If AAB=0, then AAB=0 are not quasi-coincident with B),

- (ii) $A \leq B$ iff x_rqB for each x_rqA ,
- (iii) $x_r dA$ iff x_r A"(A" is the complement of A),
- (iv) AqB iff $A \leq B''$,
- (v) $x_r q(V A_j)$ iff there is j_0 J such that $x_r q A_j$

Pelta J. Sci. .6 (1) 1992 Joine More Fusults

Proposition 1.5. Let (X, \mathbb{Z}) be an fts and $V \in \mathbb{Z}$, then $VqA \xrightarrow{} VqCl(A)$ for each fuzzy set A in X.

Theorem 1.6. [14]. A fuzzy point $x_r \in Scl(A)$ iff each fuzzy semiopen set U with x_rqU , UqA.

Theorem 1.7 [12]. If $f:X \longrightarrow Y$ is a function from a set X into a set Y,A is a fuzzy subset in X and B is a fuzzy subset in Y, then

- (i) f(S(A)) = S(f(A)), where S(A) means support of A.
- (ii) $f^{-1}(S(B)) = S(f^{-1}(B))$.

<u>Definition 1.8.</u> Let $f:X \longrightarrow Y$ be a function from an fts X into an fts Y. Then f is called:

- (i) F-continuous [6] if $f^{-1}(V)$ is fuzzy open in X for each fuzzy open set in Y,
- (ii) F-open [6], if f(U) is fuzzy open in Y for each fuzzy open set U in X.
- (iii) F-irresolute [14] if $f^{-1}(V)$ SO(X) for each V SO(Y).
- (iv) F-semicontinuous [2,5] if $f^{-1}(V) \in SO(X)$ for each fuzzy open set V in Y.
- (v) α -continuous [13], if for each $x \in X$ and for each fuzzy open set V in Y with $V(f(x)) > \alpha$, there is a fuzzy open set U in X with $U(x) > \alpha$ and $f(U) \leq V$, $0 \leq \alpha < i$.

<u>Definition 1.9.</u> [9]. Let X be an fts and $\alpha \in [0,1]$. A collection γ of fuzzy sets is called α -shading of X if for each $x \in X$, there is $\forall i \in \gamma$ with $\forall i \in \gamma$. A subcollection of an α -shading γ which is also an α -shading is called an α -subshading of γ .

Definition 1.10. An fts X is called;

- (i) Countably α -compact [11], if every countable open α -shading of X has a finite α -subshading.
- (iii) Locally α -compact [12] (resp. strong locally α -compact [9]) if for each $x \in X$, there is a neighbourhood U of x (resp. an open neighbourhood) of x such that U(x) = 1 and S(U)(resp. S(C1(U))) is α -compact.
- (iv) \propto S-closed [13] (resp. \propto I-compact [4]) if for each semiopen \propto -shading of X. there is a finite subfamily the closure (resp. the interior of the closure) of whose members are an \propto -shading of X.

<u>Definition 1.11.</u> A fuzzy subset A of an fts X is called:

(i) \propto S-closed [3] (resp. \propto I-compact [4]) relative to X if for each \propto -shading of S(A) by fuzzy semiopen sets of X; there is a finite subfamily the closure (resp. the

Falls of 16 (1) 1992 Some More Florits

in erior of the closure) of whose members are an \propto -shading $\alpha \in S(\Lambda)$.

<u>Definition 1.12.</u> [13]. An fts X is called fuzzy extremely disconnected space (an FED-space, for-short) if the closure of each fuzzy open set in X is fuzzy open in X.

$2 \cdot \alpha^*$ -semicontinuity $R \propto *$ -semicontinuity and $\propto I$ -compactness.

Definition 2.1. Let $f:(X,\mathcal{T}) \longrightarrow (Y,\theta)$ be a function from an fits (X,\mathcal{T}) to an fits (Y,θ) . For $0 \le \alpha < 1$, f is called:

- (i) α^* -semicontinuous if for each $x \in X$ and for each $V \in \partial$, with $V(f(x)) > \alpha$, there is $U \in SO(X)$ such that $U(x) > \alpha$ and $f(Int(Cl(U)) \le 1 \ (V)$.
- (ii) R $^{\sim}$ -semicontinuous (resp. R $^{\sim}$ -semicontinuous) if for each $x \in \lambda$ and for each $V \in RSO(Y)$ with $V(f(x)) > ^{\sim}$, there is $U \in SO(X)$ such that $U(x) > ^{\sim}$ and f(U) < V (resp. $f(Int(Scl(U))) \le Scl(V)$).

Remark 2.2. It is clear that an F-semicontinuous (resp. F-irresolute) function is an α^* -semicontinuous (resp. R α -semicontinuous and R α *-semicontinuous) function. That the converses need not be true as shown by Examples 2.3 and 2.4, below.

Example 2.3. Let $X = \{a,b\}$, U_1 , U_2 and U_3 be inzzy subsets of X defined as

$$U_1(a) = 0.6$$
 $U_1(b) = 0.55,$ $U_2(a) = 0.4$ $U_2(b) = 0.30,$ $U_3(a) = 0.7$ $U_3(b) = 0.8.$

Consider the following fuzzy topologies = $\{0, U_1, 1\}$ & $\theta = \{0, U_2, U_3, 1\}$ on X and the function i: $(X, T) \longrightarrow (X, \theta)$ defined by i(x)=x for each $V_j(a) = r_j > 0.6$, $V_j(b) = S_j > 0.55$; it is obvious that i is α *-semicontinous which is not F-semicontinuous when $0.4 < \alpha < 0.5$.

Example 2.4. Let X = $\{a$, b $\}$, V_1 , V_2 and V_3 be fuzzy substs of X defined as

$$V_1(a) = 0.45$$
 $V_1(b) = 0.51$ $V_2(a) = 0.4$ $V_2(b) = 0.45$ $V_3(a) = 0.6$ $V_3(b) = 0.5$

Consider the fuzzy topologies $T = \{0, V_1, 1\}$ and $\theta = \{0, V_2, V_3\}$ on X and the function $\mathbf{i} : (X, T) \longrightarrow (Y, 0)$ defined by $\mathbf{i}(\mathbf{x}) = \mathbf{x}$ for each $\mathbf{x} \in X$. It is clear that all fuzzy semiopen sets in T are \mathbf{U}_j where $\mathbf{U}_j(\mathbf{a}) = \mathbf{r}_j > 0.45$, $\mathbf{U}_j(\mathbf{b}) = \mathbf{S}_j \geqslant 0.51$. Also, the only fuzzy regular semiopen sets in 0 are \mathbf{H}_j and

Delta J. Sci. 15 (1) 1992 Sina More Results

M_j where H_j(a) = 0.4, 0.45 < H_j(b) < 0.5, M_j(a) = 0.6 and 0.5 < M_j (b) < 0.55. It is obvious that i is R_Y-semicontinuous and R_c * - semicontinuous but not F-irresolute when < = 0.53.

<u>Lemma 2.5.</u> Let X be an fts and U be a fuzzy subset of X, then Int(Cl(U)) < Scl(U).

<u>Proof:</u> Let $x_r \notin Scl(U)$, then there is $V \in So(X)$ with $x_r qV$ such that VqU and hence Int(V)qU. By Proposition 1.5. Int(V)qCl(U) and hence Cl(Int(V)) = q : Int(Cl(U)). By Proposition 1.4, Cl(Int(V)) < 1 - Int(Cl(U)). Since V = SO(X) and $x_r qV$, then $x_r qCl(Int(V))$ and hence $x_r q : (i-Int(Cl(U)))$. By Proposition 1.4, $x_r \notin Int(Cl(U))$. This show that $Int(Cl(U)) \le Scl(U)$.

Lemma 2.6. Let X be an fts, then $Scl(U) \leq Int(Cl(U))$ for each fuzzy preopen set U of X.

<u>Proof</u>: Let $x_r \notin Int(C1(U))$, then $x_r q(1-Int(C1(U)).Put$ 1-Int(C1(U))=V $\in SO(X)$. Then $x_r qV$. Since U is fuzzy preopen,

then U< Int(C1(U)), which implies Ug(1-Int(C1(U)) = V. Hence, there is $V \in SO(X)$ with $x_r qV$ such that V_qU . Then $x_r \notin Scl(U)$. This show that $Scl(U) \subseteq Int(C1(U))$.

Lemma 2.7. A fuzzy subset U of an fts X is fuzzy regular semiopen if and only if U is fuzzy semiopen and fuzzy semiclosed.

<u>Proof:</u> Let $U \in RSO(X)$, then there is a fuzzy regular open set V of X such that $V \subseteq U \subseteq C1(V)$ and hence $Int(C1(U)) = Int(C1(V)) = V \subseteq U$. Therefore U is fuzzy semiclosed and fuzzy semiopen. Conversely, let U be fuzzy semiopen and fuzzy semiclosed in X, then $Int(C1(U)) \subseteq U \subseteq C1(Int(U)) \subseteq C1(Int(C1(U))) = V$. Which is fuzzy regular open in X. Hence there exists a fuzzy regular open set V of X such that $V \subseteq U \subseteq C1(V)$. Then U is fuzzy regular semiopen.

Theorem 2.8. If (Y,θ) is an FED-space and a function $f:(X,\mathcal{T}) \longrightarrow (Y,\theta)$ is α -semicontinuous, then f is $R\alpha$ -semicontinuous.

Proof: Let $x \in X$ and $V \in RSO(Y)$ with $V(f(x)) > \alpha$. Since Y is an FED-space, then $V \leq Cl(Int(V))=Int(Cl(Int(V)))$ 0, with $Int(Cl(Int(V)))(f(x)) > \alpha$, Since f is α -semicontinuous, Polta J. Sci. 16 (1) 1992 some more results

there is $U \in SO(X)$ such that $U(x) > \alpha$ and $f(U) \leq Int(CI(Int(V)))$. By Lemma 2.5 and 2.7, $Int(CI(V)) \leq ScI(V) = V$ and hence $\tilde{\pi}(U) \leq V$, then f is $R \propto -semicontinuous$.

Theorem 2.9. If (Y,θ) is an FED-space and a function $f \cdot (X,T) \longrightarrow (Y,\theta)$ is α^* -semicontinuous, then f is R_{α^*} -semicontinuous.

<u>Proof:</u> Let $x \in X$ and $V \in RSO(Y)$ with $V(f(x)) > \alpha$. Similar to that of Theorem 2.8., there is $U \in SO(X)$ such that $U(x) > \alpha$ and semiclosed, then Int(Scl(U)) = Int(Cl(Scl(U))) = Int(Cl(U)). Since $V \in RSO(Y)$, then $Cl(V) = Cl(Int(V)) = Int(Cl(Int(V))) \le Scl(V)$. Hence $f(Int(Scl(U)) \le Scl(V)$. Therefore f is $R \propto^*$ -semicontinuous.

Theorem 2.10. If a function $f:X \longrightarrow Y$ is α^* -semiconuous and A is α I-compact relative to X, then f(A) is α -almost compact relative to Y.

<u>Proof:</u> Let \mathcal{V} be a fuzzy open α -shading of S(f(A)).

Thus for $\alpha \in S(f(A))$, there is $V_y \in \mathcal{V}$ such that $V_y(y) > \alpha$. Since f is α^* -semicontinuous, then for $x \in S(A)$ with f(x)=y, there is $U \in SO(X)$ such that $U_x(x) > \alpha$ and $f(Int(C1(U_x))) < C1(V_y)$.

Hence $\left\{U_{\mathbf{x}}: \mathbf{x} = S(\Delta)\right\}$ is and chading of $S(\Delta)$, fuzzy semiopen sets of X. Since A is α I-compact relative to X, then there is a finite subfamily $\left\{U_{\mathbf{x}_i}: i=1,2,3,\ldots,n\right\}$ such that $\left\{\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})) : i=1,2,3,\ldots,n\right\}$ is an α -shading of $S(\Delta)$. For $\mathbf{y}_i \in S(f(\Delta))$, there is $\mathbf{x}_i \in S(\Delta)$ such that $f(\mathbf{x}_i)=\mathbf{y}_i$ and hence there is $\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i}))$ such that $\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i}))$ (\mathbf{x}_i) > α . But $f(\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})))$ (\mathbf{y}_i) = $\sup_{\mathbf{x}_i \in f^{-1}(\mathbf{y}_i)} (\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})))$) (\mathbf{y}_i) > α , which implies for $\mathbf{y}_i \in \operatorname{S}(f(\Delta))$, $\operatorname{Cl}(V_{\mathbf{y}_i})(\mathbf{y}_i)$ > . Then $\left\{\operatorname{Cl}(V_{\mathbf{y}_i}): i=1,2,3,\ldots,n\right\}$ is an α -shading of $\operatorname{S}((f(\Delta)))$. Therefore $f(\Delta)$ is α -almost compact relative to Y.

In an fts X, it is easy to see that if A is α I-compact relative to X, then A is α S-closed relative to X, and α -almost compact relative to X, but not the converse. Also by the following Theorem we show that, in an FED-space X if A is α -almost compact relative to X, then A is α I-compact relative to X.

Theorem 2.11. If X is an FED-space and A is α -almost comact relative to X, then A is α I-compact relative to X.

Polta J. Sci. 16 (1) 1992 Some more Results

Proof: Let $\{F_i: i\in I\}$ be an α -shading of S(A) by fuzzy regular closed sets in X. Since X is an FED-space, then for each i I, F_1 =Cl(Int(F_i)), which is fuzzy open in X. Since A is α -almost compact relative to X, then there is a finite subset I_o of I such that $\{Cl(F_i): i I_o\}$ is an α -shading of S(A) since X is an FED-space, then $Int(F_i) = F_i = Cl(F_i)$ and hence $\{Int(F_i): i \in I_o\}$ is an α -shading of S(A). Then A is α I-compact relative to X.

The following corollary may be considered as a generalization (in fuzzy seting) and an improvement of Corollaries B and C.

Corollary 2.12. If a function $f:X \longrightarrow Y$ is α^* -semicontinuous, Y is an FED-space and A is α I-compact relative X, then f(A) is α I-compact relative to Y.

<u>Proof</u>: If follows that from Theorems 2.10 and 2.11. The following Theorem may be considered as a generalization (in fuzzy setting) and an improvement of Theorem A.

Theorem 2.13. If a function $f:X \longrightarrow Y$ is R *-semi-continuous and A is α I-compact relative to X, then f(A) is α S-closed relative to Y.

Proof: Let \mathcal{V} be an α -shading of S(f(A)) by fuzzy regular semiopen sets of Y. Thus for $y \in S(i(A))$, there is $V_y \in \mathcal{V}$ such that $V_y(y) > \alpha$. Since f is $R \in \mathbb{R}^*$ -semicontinuous, then for $x \in S(A)$, with f(x) = y, there is $U_x \subseteq SO(X)$ such that $U_x(x) > \alpha$ and $f(Int(Scl(U_x))) < Scl(V_y)$. One can obtain as in Theorem 2.11., for $y_i \in S(f(A))$, there is $x_i \in S(A)$ with $f(x_i) = y_i$ and hence, there is $Int(Cl(U_x))$ such that $Int(Cl(U_x))(x_i) > \alpha$. But $Int(Cl(U_x)) = Int(Scl(U_x))$, then $f(Int(Scl(U_x)))(y_i) = (Int(Cl(U_x)))(y_i) = \sup_{x_i \in F^{-1}(y_i)} (Int(Cl(U_x)))(x_i) > \alpha$. Then $\{Cl(V_y): i=1,2,3,\ldots,n\}$ is an α -shading of S(f(A)). Therefore f(A) is α S-closed relative to Y.

Corollary 2.14. If a function $f:X \longrightarrow Y$ is $R\alpha^*$ -semicontinuous, Y is an FED-space and A is αI -compact relative to X, then f(A) is αI -compact relative to Y.

The following corollary may be considered as a generalization (in fuzzy setting) and an improvement of Corollaries B and C.

Corollary 2.15. If a function $f:X \longrightarrow Y$ is α^* -semi-continuous, Y is an FED-space and A is α L-compact relative

Delta J. Sci. 16 (1) 1992 Some more Results

to X, then f(A) is α I-compact relative to Y.

 $\underline{\text{Proof}}\colon$ If follows that from Theorem 2.9 and Corollary 2.14.

In 1986, Mashhour, et al. [13], show that every F-continuous function is an α -continuous function, but not the converse. Since it is so, then theorems 2.16, 2.17 and Corollary 2.18 may be considered as an improvement of Theorems D, E and Corollary F, respectively.

Theorem 2.16. If a function $f:X \longrightarrow Y$ is α -continuous and X is countably α -compact, then f(X) is countably α -compact.

Proof: Assume that f(X)=Y. Let $\mathcal V$ be a countable open α -shading of Y. Thus for $y\in Y$, there is $U_y\in \mathcal V$ such that $Y_y(y)>\alpha$. Since f is α -continuous, then for $x\in X$ with f(x)=y, there is a fuzzy open set V_x of X such that $V_x(x)>\alpha$ and $f(V_x)\leq U_y$. Hence $\mathcal U=\left\{V_x:x\in X\right\}$ is countable open α -shading of X. Since X is countable α -compact, then $\mathcal U$ has a finite α -subshading $\left\{V_{x_1}:i=1,2,3,\ldots,n\right\}$. For $y_i\in Y$, there is $x_i\in X$ with $f(x_i)=y_i$ and hence there is V_x such that $V_{x_i}(x_i)>\alpha$. But $f(V_x)(y_i)=\sup_{x_i\in f^{-1}(y_i)} V_x(x_i)$, which $U_y(y_i)>\alpha$. Hence $v_i\in f^{-1}(y_i)$ is a finite α -shading of . Then F(X)

is countably & -compact.

Theorem 2.17. Let $f:X \longrightarrow Y$ be an α -continuous, F-open surjection. If X is locally α -compact, then Y is also locally α -compact.

<u>Proof:</u> Let $y \in Y$ and let f(x) = y. Since $x \in X$, there is a neighbourhood U of x such that U(x)=1 and S((U)) is α -compact. Since f is F-open, then f(U) is a neighbourhood of y such that $(f(U))(y) = \sup_{x \in f^{-1}(y)} U(x) = 1$ and since of is $x \in f^{-1}(y)$ α -continuous f(S(U)) = S(f(U)) is α -compact [13 Corollary 4.9]. Hence Y is locally α -compact.

Corollary 2.18. Let f be an α -continuous, F-open function from an fts X onto a 1*-Hausdorff fts Y such that S(C1(U) = C1(S(U))) for each fuzzy open set U in Y. If X is strongly locally α -compact, then so is Y.

Proof: It follows that from Theorem 2.17 and Theorem
5.5 of [12].

Delta J. Sci. 16 (1) 1992 some more results

REFERENCES

- 1- M.E. Abd-El-Monsef and M.H. Ghanim, Almost compact fuzzy topological spaces, Delta J.Science 5(1981), 19-29.
- 2- ----, On semiopen fuzzy sets, Delta J. Science 5 (1981), 30-44.
- 3- A.A.Allam and A.M. Zahran, Functions and S-closedness on fuzzy topological spaces, Fuzzy sets and Systems (to appear).
- ness on fuzzy topological spaces (submitted).
- 5- K.K. Azad, Fuzzy semicontiniuty, fuzzy almost continuty and fuzzy weakly continuty, J.Math.Anal.Appl. 42(1981), 14-32.
- 6- C.L. Chang, Fuzzy topological spaces, J.Math. Anal.Appl. 24(1968) 182-190.
- 7- M.A. Fath Alla, On fuzzy topological spaces, Ph.D. Thesis Assiut Univ. (1984).
- 8- D.E. Cameron, Some maximal topologies which are QHC, Proc. Amer. Math. Soc., 75 (1979) 149-156.
- 9- T.F. Ganter, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62(1978), 547-562.
- 10- A.Kandil and A.M. El-Etriby, On separation axioms in fuzzy
 Topological spaces. Tamkang J.Math., 18(1987) 49-59
- 11- S.R. Malghan and S.S. Benchalli, On fuzzy topological spaces lasm. Math. 16(1981), 313-325.

- Delta J. Sci. 16 (1) 1992 A.A. Allam
- 12- S.R. Malghan and S.S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces.

 J. Math Anal. Appl. 9(1984), 338-349.
- 13- A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, ≪-separations axioms and ≪-compactness in fuzzy topological spaces. Rocky Mount. J. Math., 3(1986), 591-600.
- 14- A.S. Mashhour, A.A.Allam and F.M. Zeyads, fuzzy regular closed functions and fuzzy irresolute functions, Bull, Fac. Sci. Assiut Univ., 14(2)(1985), 43-59.
- 15- A.S. Mashhour, A.A. Allam and K.M. Abd El-Hakeim, on fuzzy semicompact spaces, Bull. Fac.Sci., Assiut Univ. 16(1) (1987), 277-285
- 16- Pu. Poe-Ming and Liu Ying-Ming, Fuzzy topology, 1. Neighbor-hood structure of a fuzzy point and Moore smith convergence, J.Math. Anal. Appl., 76 (1980), 571-599.
- 17- D.Sivaraj, A note on S-closed spaces, Acta, Sci. Hunger 44 (1984), 207-213.

Delta J. Sci. 16 (1) 1992

بعيض النشائج الاضافية على الاتصال الغازى

احمد عبد المنصف علام قسم الرياضيات كلية العلوم جامعة اسيوط

فى هذا البحث عرفنا مفاهيم شبه الاتصال الفارى من النوع * مح وشبه الاتصال الفارى من النوع حج مح وشبه الاتصال الفارى وشبه الاتصال الفارى والنوع به الفارى والمستخدما الفارى والمستخدما الفارى والمستخدما الفارى والمستخدما النائج فى [11,12,17]