SOME MORE RESULTS ON FUZZY CONTINUITY #### BY #### A.A. Allam Mathematics Department, Faculty of Science, Assiut University Assiut, Egypt Received: 27-5-1992 #### ABSTRACT In this peice of work we define **-semicontinuous, Ra- semicontinuous and Ra*-semicontinuous functions as a generalization of F-semicontinuous and F-irresolute functions. By these concepts and the concept of an *-continuous functions, we improve and generalize (in fuzzy setting) some results previously obtained by Malghan and Benchalli [11,12] and Sivaraj [17]. #### 1. INTRODUCTION In 1978, Gantner, et al. [9] introduced the concept of \propto -compact and strong locally \propto -compact fuzzy spaces. In 1979 Gameron [8] introduced for the first the concept of I-compact spaces. In 1980 and 1984, the concept of countably \propto -compact and locally \propto -compact fuzzy spaces were introduced by Malghan and Benchalli [11,12]. In 1986 and 1987 the concepts of \propto -continuity \propto -irresolute functions and S-closed spaces were introduced by Mashhour et al. [13,15]. Delta J. Sci. 16 (1) 1992 Some More Results Theorem A [17]. If a function $f:X \longrightarrow Y$ is irresolute and $A \subset X$ is I-compact relative to X, then f(A) is $C \subset X$ relative to Y. Corollary B [17]. If a function $f:X \longrightarrow \Upsilon$ is irresolute, Υ is an FED-space and $A \subset X$ is I-compact relative to X, then f(A) is I-compact relative to Υ . Corollary C [17]. If a function $f:X \longrightarrow Y$ is semiopen and semicontinuous, Y is an ED-space and ACX is I-compact relative to X, then f(A) is I-compact relative to Y. Theorem D [11]. Let $f:X \longrightarrow Y$ be an F-continuous function. If X is countably \propto -compact, then f(X) is countably \propto -compact subspace Of Y. Theorem E [11]. Let $f:X \longrightarrow Y$ be an F-continuous, F-open surjection. If X is locally \prec -compact, then Y is locally \prec -compact. Corollary F [12]. Let f be an F-open, F-continous function from an fts X onto a 1*-Hausdorff fts Y such that Supp(C1(A)) = C1(Supp(A)) for each fuzzy open set A in Y. If X is strong locally \propto -compact, then so is Y. Let S be a fuzzy subset of a fuzz, topological space (an fig., for short) (X, \mathcal{T}), we denote the closure of (resp. interior of S, semiclosure of S) with respect to \mathcal{T} by C1(S) (resp. Int(S), Sc1(S)). The family of all fuzzy semiopen (resp. fuzzy regular semiopen) sets in A are denoted by S0(X) (resp. RSO(X)). <u>Definition 1.1</u>. A fuzzy subset S of an fts X is called: - (i) fuzzy semiopen [2,5] if $S \leq C1(Int(S))$, - (ii) fuzzy semiclosed [2,5] if S > Int (C1(S)), - (iii) fuzzy preopen [7] if $S \leq Int(Cl(S))$, - (iv) fuzzy regular open [5] if S=Int(C1(S)), - (v) fuzzy regular-semiopen [13] if there is a fuzzy regular open set U such that U<S<C1(U).</p> Definition 1.2 [16]. A fuzzy point x_r is said to be quasicoincident with A, denoted by x_rqA if r > A''(x) > 1. A fuzzy set A is quasi-concident with a fuzzy set B or AqB if there is x + X, A(x) + B(x) > 1. A fuzzy set A in an fts (X, \mathcal{T}) is called a Q-neighbourhood of x_r iff there is $B \in \mathcal{T}$ such that $x_rqB \leq A$. Theorem 1.3. [16]. A fuzzy point $x_r \in C1(A)$ iff each q-neighbourhood of x_r is quasi-coincident with A. The following Propositions have been stated in [10]. <u>Proposition 1.4.</u> (i) If AAB=0, then AAB=0 are not quasi-coincident with B), - (ii) $A \leq B$ iff x_rqB for each x_rqA , - (iii) $x_r dA$ iff x_r A"(A" is the complement of A), - (iv) AqB iff $A \leq B''$, - (v) $x_r q(V A_j)$ iff there is j_0 J such that $x_r q A_j$ Pelta J. Sci. .6 (1) 1992 Joine More Fusults Proposition 1.5. Let (X, \mathbb{Z}) be an fts and $V \in \mathbb{Z}$, then $VqA \xrightarrow{} VqCl(A)$ for each fuzzy set A in X. Theorem 1.6. [14]. A fuzzy point $x_r \in Scl(A)$ iff each fuzzy semiopen set U with x_rqU , UqA. Theorem 1.7 [12]. If $f:X \longrightarrow Y$ is a function from a set X into a set Y,A is a fuzzy subset in X and B is a fuzzy subset in Y, then - (i) f(S(A)) = S(f(A)), where S(A) means support of A. - (ii) $f^{-1}(S(B)) = S(f^{-1}(B))$. <u>Definition 1.8.</u> Let $f:X \longrightarrow Y$ be a function from an fts X into an fts Y. Then f is called: - (i) F-continuous [6] if $f^{-1}(V)$ is fuzzy open in X for each fuzzy open set in Y, - (ii) F-open [6], if f(U) is fuzzy open in Y for each fuzzy open set U in X. - (iii) F-irresolute [14] if $f^{-1}(V)$ SO(X) for each V SO(Y). - (iv) F-semicontinuous [2,5] if $f^{-1}(V) \in SO(X)$ for each fuzzy open set V in Y. - (v) α -continuous [13], if for each $x \in X$ and for each fuzzy open set V in Y with $V(f(x)) > \alpha$, there is a fuzzy open set U in X with $U(x) > \alpha$ and $f(U) \leq V$, $0 \leq \alpha < i$. <u>Definition 1.9.</u> [9]. Let X be an fts and $\alpha \in [0,1]$. A collection γ of fuzzy sets is called α -shading of X if for each $x \in X$, there is $\forall i \in \gamma$ with $\forall i \in \gamma$. A subcollection of an α -shading γ which is also an α -shading is called an α -subshading of γ . ## Definition 1.10. An fts X is called; - (i) Countably α -compact [11], if every countable open α -shading of X has a finite α -subshading. - (iii) Locally α -compact [12] (resp. strong locally α -compact [9]) if for each $x \in X$, there is a neighbourhood U of x (resp. an open neighbourhood) of x such that U(x) = 1 and S(U)(resp. S(C1(U))) is α -compact. - (iv) \propto S-closed [13] (resp. \propto I-compact [4]) if for each semiopen \propto -shading of X. there is a finite subfamily the closure (resp. the interior of the closure) of whose members are an \propto -shading of X. <u>Definition 1.11.</u> A fuzzy subset A of an fts X is called: (i) \propto S-closed [3] (resp. \propto I-compact [4]) relative to X if for each \propto -shading of S(A) by fuzzy semiopen sets of X; there is a finite subfamily the closure (resp. the Falls of 16 (1) 1992 Some More Florits in erior of the closure) of whose members are an \propto -shading $\alpha \in S(\Lambda)$. <u>Definition 1.12.</u> [13]. An fts X is called fuzzy extremely disconnected space (an FED-space, for-short) if the closure of each fuzzy open set in X is fuzzy open in X. # $2 \cdot \alpha^*$ -semicontinuity $R \propto *$ -semicontinuity and $\propto I$ -compactness. Definition 2.1. Let $f:(X,\mathcal{T}) \longrightarrow (Y,\theta)$ be a function from an fits (X,\mathcal{T}) to an fits (Y,θ) . For $0 \le \alpha < 1$, f is called: - (i) α^* -semicontinuous if for each $x \in X$ and for each $V \in \partial$, with $V(f(x)) > \alpha$, there is $U \in SO(X)$ such that $U(x) > \alpha$ and $f(Int(Cl(U)) \le 1 \ (V)$. - (ii) R $^{\sim}$ -semicontinuous (resp. R $^{\sim}$ -semicontinuous) if for each $x \in \lambda$ and for each $V \in RSO(Y)$ with $V(f(x)) > ^{\sim}$, there is $U \in SO(X)$ such that $U(x) > ^{\sim}$ and f(U) < V (resp. $f(Int(Scl(U))) \le Scl(V)$). Remark 2.2. It is clear that an F-semicontinuous (resp. F-irresolute) function is an α^* -semicontinuous (resp. R α -semicontinuous and R α *-semicontinuous) function. That the converses need not be true as shown by Examples 2.3 and 2.4, below. Example 2.3. Let $X = \{a,b\}$, U_1 , U_2 and U_3 be inzzy subsets of X defined as $$U_1(a) = 0.6$$ $U_1(b) = 0.55,$ $U_2(a) = 0.4$ $U_2(b) = 0.30,$ $U_3(a) = 0.7$ $U_3(b) = 0.8.$ Consider the following fuzzy topologies = $\{0, U_1, 1\}$ & $\theta = \{0, U_2, U_3, 1\}$ on X and the function i: $(X, T) \longrightarrow (X, \theta)$ defined by i(x)=x for each $V_j(a) = r_j > 0.6$, $V_j(b) = S_j > 0.55$; it is obvious that i is α *-semicontinous which is not F-semicontinuous when $0.4 < \alpha < 0.5$. Example 2.4. Let X = $\{a$, b $\}$, V_1 , V_2 and V_3 be fuzzy substs of X defined as $$V_1(a) = 0.45$$ $V_1(b) = 0.51$ $V_2(a) = 0.4$ $V_2(b) = 0.45$ $V_3(a) = 0.6$ $V_3(b) = 0.5$ Consider the fuzzy topologies $T = \{0, V_1, 1\}$ and $\theta = \{0, V_2, V_3\}$ on X and the function $\mathbf{i} : (X, T) \longrightarrow (Y, 0)$ defined by $\mathbf{i}(\mathbf{x}) = \mathbf{x}$ for each $\mathbf{x} \in X$. It is clear that all fuzzy semiopen sets in T are \mathbf{U}_j where $\mathbf{U}_j(\mathbf{a}) = \mathbf{r}_j > 0.45$, $\mathbf{U}_j(\mathbf{b}) = \mathbf{S}_j \geqslant 0.51$. Also, the only fuzzy regular semiopen sets in 0 are \mathbf{H}_j and Delta J. Sci. 15 (1) 1992 Sina More Results M_j where H_j(a) = 0.4, 0.45 < H_j(b) < 0.5, M_j(a) = 0.6 and 0.5 < M_j (b) < 0.55. It is obvious that i is R_Y-semicontinuous and R_c * - semicontinuous but not F-irresolute when < = 0.53. <u>Lemma 2.5.</u> Let X be an fts and U be a fuzzy subset of X, then Int(Cl(U)) < Scl(U). <u>Proof:</u> Let $x_r \notin Scl(U)$, then there is $V \in So(X)$ with $x_r qV$ such that VqU and hence Int(V)qU. By Proposition 1.5. Int(V)qCl(U) and hence Cl(Int(V)) = q : Int(Cl(U)). By Proposition 1.4, Cl(Int(V)) < 1 - Int(Cl(U)). Since V = SO(X) and $x_r qV$, then $x_r qCl(Int(V))$ and hence $x_r q : (i-Int(Cl(U)))$. By Proposition 1.4, $x_r \notin Int(Cl(U))$. This show that $Int(Cl(U)) \le Scl(U)$. Lemma 2.6. Let X be an fts, then $Scl(U) \leq Int(Cl(U))$ for each fuzzy preopen set U of X. <u>Proof</u>: Let $x_r \notin Int(C1(U))$, then $x_r q(1-Int(C1(U)).Put$ 1-Int(C1(U))=V $\in SO(X)$. Then $x_r qV$. Since U is fuzzy preopen, then U< Int(C1(U)), which implies Ug(1-Int(C1(U)) = V. Hence, there is $V \in SO(X)$ with $x_r qV$ such that V_qU . Then $x_r \notin Scl(U)$. This show that $Scl(U) \subseteq Int(C1(U))$. Lemma 2.7. A fuzzy subset U of an fts X is fuzzy regular semiopen if and only if U is fuzzy semiopen and fuzzy semiclosed. <u>Proof:</u> Let $U \in RSO(X)$, then there is a fuzzy regular open set V of X such that $V \subseteq U \subseteq C1(V)$ and hence $Int(C1(U)) = Int(C1(V)) = V \subseteq U$. Therefore U is fuzzy semiclosed and fuzzy semiopen. Conversely, let U be fuzzy semiopen and fuzzy semiclosed in X, then $Int(C1(U)) \subseteq U \subseteq C1(Int(U)) \subseteq C1(Int(C1(U))) = V$. Which is fuzzy regular open in X. Hence there exists a fuzzy regular open set V of X such that $V \subseteq U \subseteq C1(V)$. Then U is fuzzy regular semiopen. Theorem 2.8. If (Y,θ) is an FED-space and a function $f:(X,\mathcal{T}) \longrightarrow (Y,\theta)$ is α -semicontinuous, then f is $R\alpha$ -semicontinuous. Proof: Let $x \in X$ and $V \in RSO(Y)$ with $V(f(x)) > \alpha$. Since Y is an FED-space, then $V \leq Cl(Int(V))=Int(Cl(Int(V)))$ 0, with $Int(Cl(Int(V)))(f(x)) > \alpha$, Since f is α -semicontinuous, Polta J. Sci. 16 (1) 1992 some more results there is $U \in SO(X)$ such that $U(x) > \alpha$ and $f(U) \leq Int(CI(Int(V)))$. By Lemma 2.5 and 2.7, $Int(CI(V)) \leq ScI(V) = V$ and hence $\tilde{\pi}(U) \leq V$, then f is $R \propto -semicontinuous$. Theorem 2.9. If (Y,θ) is an FED-space and a function $f \cdot (X,T) \longrightarrow (Y,\theta)$ is α^* -semicontinuous, then f is R_{α^*} -semicontinuous. <u>Proof:</u> Let $x \in X$ and $V \in RSO(Y)$ with $V(f(x)) > \alpha$. Similar to that of Theorem 2.8., there is $U \in SO(X)$ such that $U(x) > \alpha$ and semiclosed, then Int(Scl(U)) = Int(Cl(Scl(U))) = Int(Cl(U)). Since $V \in RSO(Y)$, then $Cl(V) = Cl(Int(V)) = Int(Cl(Int(V))) \le Scl(V)$. Hence $f(Int(Scl(U)) \le Scl(V)$. Therefore f is $R \propto^*$ -semicontinuous. Theorem 2.10. If a function $f:X \longrightarrow Y$ is α^* -semiconuous and A is α I-compact relative to X, then f(A) is α -almost compact relative to Y. <u>Proof:</u> Let \mathcal{V} be a fuzzy open α -shading of S(f(A)). Thus for $\alpha \in S(f(A))$, there is $V_y \in \mathcal{V}$ such that $V_y(y) > \alpha$. Since f is α^* -semicontinuous, then for $x \in S(A)$ with f(x)=y, there is $U \in SO(X)$ such that $U_x(x) > \alpha$ and $f(Int(C1(U_x))) < C1(V_y)$. Hence $\left\{U_{\mathbf{x}}: \mathbf{x} = S(\Delta)\right\}$ is and chading of $S(\Delta)$, fuzzy semiopen sets of X. Since A is α I-compact relative to X, then there is a finite subfamily $\left\{U_{\mathbf{x}_i}: i=1,2,3,\ldots,n\right\}$ such that $\left\{\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})) : i=1,2,3,\ldots,n\right\}$ is an α -shading of $S(\Delta)$. For $\mathbf{y}_i \in S(f(\Delta))$, there is $\mathbf{x}_i \in S(\Delta)$ such that $f(\mathbf{x}_i)=\mathbf{y}_i$ and hence there is $\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i}))$ such that $\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i}))$ (\mathbf{x}_i) > α . But $f(\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})))$ (\mathbf{y}_i) = $\sup_{\mathbf{x}_i \in f^{-1}(\mathbf{y}_i)} (\operatorname{Int}(\operatorname{Cl}(U_{\mathbf{x}_i})))$) (\mathbf{y}_i) > α , which implies for $\mathbf{y}_i \in \operatorname{S}(f(\Delta))$, $\operatorname{Cl}(V_{\mathbf{y}_i})(\mathbf{y}_i)$ > . Then $\left\{\operatorname{Cl}(V_{\mathbf{y}_i}): i=1,2,3,\ldots,n\right\}$ is an α -shading of $\operatorname{S}((f(\Delta)))$. Therefore $f(\Delta)$ is α -almost compact relative to Y. In an fts X, it is easy to see that if A is α I-compact relative to X, then A is α S-closed relative to X, and α -almost compact relative to X, but not the converse. Also by the following Theorem we show that, in an FED-space X if A is α -almost compact relative to X, then A is α I-compact relative to X. Theorem 2.11. If X is an FED-space and A is α -almost comact relative to X, then A is α I-compact relative to X. Polta J. Sci. 16 (1) 1992 Some more Results Proof: Let $\{F_i: i\in I\}$ be an α -shading of S(A) by fuzzy regular closed sets in X. Since X is an FED-space, then for each i I, F_1 =Cl(Int(F_i)), which is fuzzy open in X. Since A is α -almost compact relative to X, then there is a finite subset I_o of I such that $\{Cl(F_i): i I_o\}$ is an α -shading of S(A) since X is an FED-space, then $Int(F_i) = F_i = Cl(F_i)$ and hence $\{Int(F_i): i \in I_o\}$ is an α -shading of S(A). Then A is α I-compact relative to X. The following corollary may be considered as a generalization (in fuzzy seting) and an improvement of Corollaries B and C. Corollary 2.12. If a function $f:X \longrightarrow Y$ is α^* -semicontinuous, Y is an FED-space and A is α I-compact relative X, then f(A) is α I-compact relative to Y. <u>Proof</u>: If follows that from Theorems 2.10 and 2.11. The following Theorem may be considered as a generalization (in fuzzy setting) and an improvement of Theorem A. Theorem 2.13. If a function $f:X \longrightarrow Y$ is R *-semi-continuous and A is α I-compact relative to X, then f(A) is α S-closed relative to Y. Proof: Let \mathcal{V} be an α -shading of S(f(A)) by fuzzy regular semiopen sets of Y. Thus for $y \in S(i(A))$, there is $V_y \in \mathcal{V}$ such that $V_y(y) > \alpha$. Since f is $R \in \mathbb{R}^*$ -semicontinuous, then for $x \in S(A)$, with f(x) = y, there is $U_x \subseteq SO(X)$ such that $U_x(x) > \alpha$ and $f(Int(Scl(U_x))) < Scl(V_y)$. One can obtain as in Theorem 2.11., for $y_i \in S(f(A))$, there is $x_i \in S(A)$ with $f(x_i) = y_i$ and hence, there is $Int(Cl(U_x))$ such that $Int(Cl(U_x))(x_i) > \alpha$. But $Int(Cl(U_x)) = Int(Scl(U_x))$, then $f(Int(Scl(U_x)))(y_i) = (Int(Cl(U_x)))(y_i) = \sup_{x_i \in F^{-1}(y_i)} (Int(Cl(U_x)))(x_i) > \alpha$. Then $\{Cl(V_y): i=1,2,3,\ldots,n\}$ is an α -shading of S(f(A)). Therefore f(A) is α S-closed relative to Y. Corollary 2.14. If a function $f:X \longrightarrow Y$ is $R\alpha^*$ -semicontinuous, Y is an FED-space and A is αI -compact relative to X, then f(A) is αI -compact relative to Y. The following corollary may be considered as a generalization (in fuzzy setting) and an improvement of Corollaries B and C. Corollary 2.15. If a function $f:X \longrightarrow Y$ is α^* -semi-continuous, Y is an FED-space and A is α L-compact relative Delta J. Sci. 16 (1) 1992 Some more Results to X, then f(A) is α I-compact relative to Y. $\underline{\text{Proof}}\colon$ If follows that from Theorem 2.9 and Corollary 2.14. In 1986, Mashhour, et al. [13], show that every F-continuous function is an α -continuous function, but not the converse. Since it is so, then theorems 2.16, 2.17 and Corollary 2.18 may be considered as an improvement of Theorems D, E and Corollary F, respectively. Theorem 2.16. If a function $f:X \longrightarrow Y$ is α -continuous and X is countably α -compact, then f(X) is countably α -compact. Proof: Assume that f(X)=Y. Let $\mathcal V$ be a countable open α -shading of Y. Thus for $y\in Y$, there is $U_y\in \mathcal V$ such that $Y_y(y)>\alpha$. Since f is α -continuous, then for $x\in X$ with f(x)=y, there is a fuzzy open set V_x of X such that $V_x(x)>\alpha$ and $f(V_x)\leq U_y$. Hence $\mathcal U=\left\{V_x:x\in X\right\}$ is countable open α -shading of X. Since X is countable α -compact, then $\mathcal U$ has a finite α -subshading $\left\{V_{x_1}:i=1,2,3,\ldots,n\right\}$. For $y_i\in Y$, there is $x_i\in X$ with $f(x_i)=y_i$ and hence there is V_x such that $V_{x_i}(x_i)>\alpha$. But $f(V_x)(y_i)=\sup_{x_i\in f^{-1}(y_i)} V_x(x_i)$, which $U_y(y_i)>\alpha$. Hence $v_i\in f^{-1}(y_i)$ is a finite α -shading of . Then F(X) is countably & -compact. Theorem 2.17. Let $f:X \longrightarrow Y$ be an α -continuous, F-open surjection. If X is locally α -compact, then Y is also locally α -compact. <u>Proof:</u> Let $y \in Y$ and let f(x) = y. Since $x \in X$, there is a neighbourhood U of x such that U(x)=1 and S((U)) is α -compact. Since f is F-open, then f(U) is a neighbourhood of y such that $(f(U))(y) = \sup_{x \in f^{-1}(y)} U(x) = 1$ and since of is $x \in f^{-1}(y)$ α -continuous f(S(U)) = S(f(U)) is α -compact [13 Corollary 4.9]. Hence Y is locally α -compact. Corollary 2.18. Let f be an α -continuous, F-open function from an fts X onto a 1*-Hausdorff fts Y such that S(C1(U) = C1(S(U))) for each fuzzy open set U in Y. If X is strongly locally α -compact, then so is Y. Proof: It follows that from Theorem 2.17 and Theorem 5.5 of [12]. Delta J. Sci. 16 (1) 1992 some more results #### REFERENCES - 1- M.E. Abd-El-Monsef and M.H. Ghanim, Almost compact fuzzy topological spaces, Delta J.Science 5(1981), 19-29. - 2- ----, On semiopen fuzzy sets, Delta J. Science 5 (1981), 30-44. - 3- A.A.Allam and A.M. Zahran, Functions and S-closedness on fuzzy topological spaces, Fuzzy sets and Systems (to appear). - ness on fuzzy topological spaces (submitted). - 5- K.K. Azad, Fuzzy semicontiniuty, fuzzy almost continuty and fuzzy weakly continuty, J.Math.Anal.Appl. 42(1981), 14-32. - 6- C.L. Chang, Fuzzy topological spaces, J.Math. Anal.Appl. 24(1968) 182-190. - 7- M.A. Fath Alla, On fuzzy topological spaces, Ph.D. Thesis Assiut Univ. (1984). - 8- D.E. Cameron, Some maximal topologies which are QHC, Proc. Amer. Math. Soc., 75 (1979) 149-156. - 9- T.F. Ganter, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62(1978), 547-562. - 10- A.Kandil and A.M. El-Etriby, On separation axioms in fuzzy Topological spaces. Tamkang J.Math., 18(1987) 49-59 - 11- S.R. Malghan and S.S. Benchalli, On fuzzy topological spaces lasm. Math. 16(1981), 313-325. - Delta J. Sci. 16 (1) 1992 A.A. Allam - 12- S.R. Malghan and S.S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces. J. Math Anal. Appl. 9(1984), 338-349. - 13- A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, ≪-separations axioms and ≪-compactness in fuzzy topological spaces. Rocky Mount. J. Math., 3(1986), 591-600. - 14- A.S. Mashhour, A.A.Allam and F.M. Zeyads, fuzzy regular closed functions and fuzzy irresolute functions, Bull, Fac. Sci. Assiut Univ., 14(2)(1985), 43-59. - 15- A.S. Mashhour, A.A. Allam and K.M. Abd El-Hakeim, on fuzzy semicompact spaces, Bull. Fac.Sci., Assiut Univ. 16(1) (1987), 277-285 - 16- Pu. Poe-Ming and Liu Ying-Ming, Fuzzy topology, 1. Neighbor-hood structure of a fuzzy point and Moore smith convergence, J.Math. Anal. Appl., 76 (1980), 571-599. - 17- D.Sivaraj, A note on S-closed spaces, Acta, Sci. Hunger 44 (1984), 207-213. Delta J. Sci. 16 (1) 1992 # بعيض النشائج الاضافية على الاتصال الغازى احمد عبد المنصف علام قسم الرياضيات كلية العلوم جامعة اسيوط فى هذا البحث عرفنا مفاهيم شبه الاتصال الفارى من النوع * مح وشبه الاتصال الفارى من النوع حج مح وشبه الاتصال الفارى وشبه الاتصال الفارى والنوع به الفارى والمستخدما الفارى والمستخدما الفارى والمستخدما الفارى والمستخدما النائج فى [11,12,17]