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- ABSTRACT

This paper presents an approach for
solving vector optimization problems (VOP)
which combines the characteristics of both
the weghted sum norm method and constraint
method. It is shown in the paper that the
noninferior solutions of Vop can be charact-
erized in terms of the optimal solutiocns of
the presented approach. Also, in this paper,
the basic notions in parametric convex pro-
gramming are redefined and analyzed qualitats
atively for VOP. Such analysis gives us the
possibility of relating different SOP's with
each other.

INTRODUCTION

In an earlier work Chankong and Haimes gave necess-
"ary and sufficient conditions for the determination of the
noninferior solutions for vector optimization problems (VOP)
using the hybrid approach which combines the charactrristics
of both the nonnegative weighted sum method and the k th -
objective f.—-tonstraint method [1]}. Furthermore, they deter-

mined the necessary and sufficient conditions for the
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determination of the noninferior solutions for VOP using
the weighted sum norm method. Also, Osman in [3] introduced

and basic noticns in parametric convex programming problems.

This paper is devoted to characterize the noninferior
solutions for VOP using the modified hybrid approach which
combines the characteristics of both the weighted sum norm
method and the k th-objective —-€ — constraint method.

The basic notions in parametric convex programming are
redefined and analyzed qualitatively for VOP in this paper.
Also, the paper presents several results which relate two

convex programs with each other.

Problem formulation .
Let us consider the following vector optimization

problems:
min (fl(xjs fz(x)i cee g fn(x))
vopP subject to
. N .
X ={jx ¢ R \gi(x) ¢ o, i=1,2,...,m }

Let us define the following scalarization of VOP,

This approach combines the characteristics of both the
weightednorm and constraint characterization. Accordingly,
it will be called the hybrid characterization. The formula-

tion of this approach can be stated as :
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n ¥ P
min Y. W, ‘f.(x) - £, |
x € X 5=1 3 J
P{w , p,g )

suhject to fj(x) £ Ej for all j=1,2, ...,n,
where 1 ¢ p <™ , f%¥ = min 2 f. (x) and the w.'s are
= J X e J J

nonnegative weights satisfying wj > 8 for all j=1,2,...,n
n

and I, wj = 1. Here noninferier solutions of VOP are
=1 .

characterized in terms of P(w , p, € ).

Characterization of the noninferior sclutions.

The following theorems establish the relation between
the noninferior solutions of VOP and the optimal soutions

OfP(W,P,E)-

Theorem 1 x¥ is noninferior solution of VOP if and
only if x* is an optimal solution of P(w, p, € ) for any
given wj >o0, j=1,2,...,n and for some E € R" for which

P(w, p, £ ) is feasible.

Proof. Necessity;assume that for any given w} >0,
j=1,2,...,0n , x does not solve P(w® , p, ¢ ) for any

¢ including P(w®, p , g¥), where £§ = fj(x%) R
j=1,2,...,n. Let x° be an optimal solution of P(w°,p,e*).

Hence we have :.

‘P

c_";. M:!

P n
® o f(x°)-f% < el f (x¥) - %
le(x)J\ wa\J(X) ;

1 i=1
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and fj(x°) < fj(x*) for a1 j=1,2,...,n . Hence x*

is not noninforior solution proving necessity.

Sufficiency-suppose that x¥* solves P(w® , p, & ) for

some § € R". It must also solve P(w® , p , g%), where

&? = fj(x*) s Jj= 1, A ,N. Suppose x* is not
noninferior seclution of VOP, then there exists x°¢ X
such that :
f3 (x°) < fj(x*) for all j= 1,2,..... n, then

T W |£.(x%) - £ |F < g;w? |£(x#) - £2 (P,
a1 43 Ito=gdd J

o

‘ W j > 0‘, j = 1;2,_.-..- ’ Ii.
This clearly contradicts the assumption that x%* solves
P(w® , P, g% ). Since x° € X, then x¥ must be noninferior

solution of VOP.

Theorem 2 Assume that one of the following holds:
(i) P(w° , P, € ) is stable, X is convex set , and
fj(x), j=1,2,...,n are convex functions throughout RN, or
(ii) all fj(x), j=1,2,..., n and gi(x) s 1i=1,2,...,m
are faithfully convex (all these functions are either linear

or nonlinear and contain no stright-line segment in their
. N ’
graphs) throughout R and X, then :

X* = p if W(er)=- 00,

where X¥ is the set of all noninferior solutions of VOP.
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Proof. Since

* o e % P %

= inf -
V(&) = in { Y wj \fj(x) fj ] \x ¢ X and fj(x) < ZJ
j=1

AL
O

i=1,2, ...},

- [+o)

The weak dualiiy theorem reguires that the dual of P{w® ,

p , g% ) also be - @ , that is

sup [ inf %E w® | £
]

* P n .
(- £ | + £ u (£ )-f&x*NH=-
u>0 xeX*j=1 ‘ j =1 3 3]

J J J ]

Suppose that there exists a noninferior solution say x°

of VOP. From Theorem 1 , x° solves P(w® , p , g°) where
fj(x°) = E; . j=1, 2, ...,n If assumption (i) prevails,
apply Geoffrion's strong duality theorem, and if assumption

(ii) prevails, apply

It %
Z v f (x°)—f\P
=133 J
Cming D we £, o= £ + 2w, (£
= 35up min§ e wh [£. (x)- £, + u., Ax
>0 x€xtiz 377 il j=1 1

- fj(x°))} 1.

In any case we have

n 3
R N FC O
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*»p I
= sup nf i: wiif . (x)- £} + Ax)-£.(x°)); ]
u> 0 xle X{ Jl J g J| %11 uJ ’ J . }

which is a contradiction. Thus X must be emnty.

The set feasible parameters

Definition 1. The set of feasible parameters for problem

P(w,p,€ ), denoted by U, is defined by :

U={ €€ " | Xe)+ ¢ F
wheré X(&)z{xERN\.xeX and fj(x)éij, j=1,2,-...,n_}

Theorem 3. If VOP is convex , then the set U is convex .,

Proof. Let El s 22 € U and 21 + 22 , then there exist

points x1 , x2 in RN respectively such that fj(xl) 5_5;

and fJ(xz) 2

i o j= 1,2, ...,n. Therefore (1 - aL)fj(xI)
+exf . (x ) < (1-) E +a(&§ , J=1,2,...,n for all o Lo ¢l
From the convexity of the functions fj(x), i=1,2,...,n

and the set X it follows that :

fj[(l- o<)x1 +0{x2] < (l—ac)&l + X 32 sy J=1,2, ..., n and

ol 2 J I R
(I=x)x" + X x" € X. Then X[(l-~) & e ] F ¢ .

This means that (1 —°<)§1+=‘(&2€U for all o < ¢ 1.

Hence the set U 1is cinvex .
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Theorem 4. If there is £€ U such that X( &€ )} is bounded,

then the set U is closed.

Proof. Suppose that € € R" is a frontier point of U,
then any neighbourbood of £ has a nonempty intersection
with U, it follows that € + vV € U for any ¥ > o.
Consider the sequence {E Y ; vn+1 <y Ve o0
as n—>00{(n=1,2, ....). The set X(¢ , 2" ) is
compact since it is closed and bounded , with

X(E+2"H E X (E +»"), Bt 1,2, enns,

Therefore, it flollows that :

n=1

and hence the result .

The solvability set .

Definition 2. The solvability set of P(w , p , & ),

denoted by B, is defined by :

2 *®
B={ (w,e)e R X (£)F 4],
%
where X ( & ) is the set of all optimal solutions of P(w ,

P,e).
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Let us decompose the set B into Bl and B2 . where
Bl is the orthogonal projection'of B on £ - space, that

is the orthogonal projection of B on ¢ -space , that is

Bj={ £e R"|(wv ,¢)eBY.

Also, B2 is the orthogonal projection: of B on w-space,

that is

B,={ve R"|(w,e)e B} .

#®
Theorem 5, If for one g € B1 , it holds that X (&)

is bounded, then Bl =[J.

% *
Proof. Suppose that € = £, Cx)y =120, m,
% .
where x 1is an optimal solution of P(w , p , £ ) it follows
from the assumption that
P #
X(a)={xeRleexandfj(x)__<=g ,
Yy ;

is bounded. Hence the set

#* N

X = €R e X d £, < &., j=1,2, ....n.
(g) {x Ix; an J(X) g5 5 n.}

#*
is bounded, see [3[, for all £€ R" for which X~¢£ ) # o .

It follows from Theorem 3 and Theorem 4 that the set U is
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unbounded, convex and closed set. Suppose s e U,

* %
then X ( g° ) 4 o, therefore , there exists x° € X (€,

which implies U C B1 , and hence B1 = U.

d. 4 )
L

It is clear that the set B, U f o} is a cone with

vertex at the origin .

The stability set of the first kind.

Definition 3. Assume that the problem P(w , p , & )

* # :

is stable for ( w , § ) with a corresponding noninferior
3

solution x , then the stability set first kind correspon-

# *
ding to x , denoted by S(x ), is defined by

s6h = { (v Ede KTy 7 R LACOR fi i°

j=1

= min o * P
x € X Ele £y (0 - £ S

j=1

* o #
By decomposing the set S(x ) into Sl(x ) and 82(x ),

# : #
where Sl(x ) is the orthogonal projection of S(x ) on
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£ - space, that is
+* 3t
sy = { ge R (v, rese],

¥* 3
and 52 (x ) is the orthogonal projection of S(x ) on

w-space, that is
#
S,(x%) =L weR™ [(w, €) esx)1.

¥*
Theorem 6. The set Sl(x ) is star shaped and closed.
The proof is similar to the proof which was given in [3].

Also it is clear that :
+*
(1) the set 82(x ) 1is convex

(2) Sz(x*) U {O'Bis a closed convex cone with vertex
at the origin, and
(3) if interior [SZ(;i N Sz(x*) 1+ ¢
then SZ(E) =5, (x)

Related parametric convex programs.

In this section several results will be presented
which relate the convex programming problem P(w , p , £ )
with parameters in both objective function and the right
hand side of the constraints to the convex programming
problem P(w , & ) with parameters in both objective functicn

and the right hand side of the constraints.
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It is well known from the literature that noninferier

solutions of VOP are characterized in terms of the optimal
solution of problem P(w , & ).

*
At a point x , the Kuhn-Tucker conditions of P(w, p,€)

take the form, see [2] ,

*

n *
.| £ - f.
JE' puy L5000 = £ B X

n g, (x)
# LY, e =0, K =1,2,..... N,
i=1 13 Xat,
# *
f.(x )} EJ <0, J=1:2’- 211,
%
gl(x ) S_ o, 1= 1!29 y M,
P (£ () - &) 1,2
. AX - LJ)=0 = 1Ly PR
N DO J
#*
11' gi(x ) =0, i=1,2,000.. m,
‘Uj > o, j=1,2, ...n and 1&= o, i=1,2,..,m

Also, the Kuhn-Tuker conditions of problem P(w , £ ) take
the form :
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*

f.(x*) - €. <o, j=1,2,...,n,
J( ) ; < J
gi(x*) <o, i=1,2,...,m,
B.(f (x*) - &% )=0, j=1,2,...,n,
)53( J(x ) 3 ) i
v 3 - =
Yi gi(x ) =0, i=1,2,...,m,
-ﬁj >o0, j= 1,2,...,n and ?i >0, 1i=1,2,..... ,m.,

Theorem 7. If x* is an optimal solution of P(w , P, &)

3* * 3¥* * #* H# ¥ _*# *
(w, P,g )=(w ,P, &) and (x ,w , P, Es;-]su)

L3
solves the Kuhn-Tucker conditions of P(w , P , €}, then x

¥ % *
is an optimal solution of P(w , € ) for Wj =P W |fj(X )
% pE_
£ |P 1
J

of P(w, g ) for (w6 )= (w, g) and (x, v, £ , N, )

s J=1,2,. ..., ,n. And if x is an optimal solution

solves the Kuhn-Tucker conditions of P(w , € ), then x is
—. ¥ -
an optimal solution of P(w , p , £ ) for ijtfj(x)‘fj ]p 1

=—‘ y '=1,2, cesay Il
WJ ]

The proof follows directly from the Kuhn-Tucker conditions

of problems P(w , p , & ) and P(w , & ).

3
Theorem 8. If x is an optimal solution of the problem

Pw, p,&)and (", P

b 1

#*
¥ ) solves the Kuhn-

Tucker conditions of problem P(w , p , &) with v > o and
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fj(x) y J=1,2, i, ,1 are strictly convex functions i
#*
on R® , then x is a noninferior solution of VOP.
: A
The proof is clear. ' )l
e

Example Consider the following VOP : v{"ﬁ
min ((x a“l)z +y, X +73)
. 2
subjectt0X={(x,y)€R!x,y>o}
* %
It is clear that (fl . f2 Y= (o, o) , therefore
min (wll(x - 1)2 + ¥ lP + v, |x + v |P)
Plw,p,e): 3
2.
subject to X(& ) ={_(x,y)€.R2\ X,¥ 2 0 (x-l;i?gyt§51
e 1 T
and X + ¥ ; é}, =
where 1 ¢ p <@ 1a¥y s Wg 20 and Wy o+ Wy =1,
The following sets are obtained :
- 2 s 2 -
U-{EER\5130,52>0 and &13 2—7;-—-}.-B1
It is clear that the point ( 3§ , o ) is a noninferior of
VOF., let P =1, then
Sl(

SZ(

i

,o)={€€ | 812% and 52?:%}, and

nj

,o)={w € R2| w1>o,w2>o and w1=w2-}.
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