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ABSTRACT

A quadratic optimal control problem with
control component failure is considered in this
work., The concept of recoverability is presented
and applied to a constant linear quadratic con-
‘trol system. A second order control problem
being analyzed with the objective to minimize
a certain regulized cost functional is given.

An optimal synthesis is determined for a control
system without and with a control component
failure. Both the singular and nonsingular
optimal controls are obtained in a simple struc-
ture involving linear state and switching func-
tions.

INTRODUCTION
The optimal control problem for linear system with
a saturable scalar control has been extensively studied for
various cost functionals, [2,3,5] ,. In the case of time

optimal and fuel optimal contreol, explicit analytical
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solutions have been obtained for many systems of low order,
[3,6],.

In control problems it can happen that some components
of the control fails for an indefinite period of time before
the objective is accomplished. When the system works to
avoid this fault, it will tend to accomplishe the objective
with the remaining components of control which are operating

normally.

In this work an optimal control system having a certain
quadratic cost functional with a failure control, is studied.
The cost integrand will be modified by introducing a suitably
chosen non-quadratic state penalty term. This modification
regularizes the problem in order to obtain explicit synthesis
torms for both singular and nonsingular optimal controls.

The concept of recoverability, {1], is developed and applied

to the control system under consideration . The optimal

problem without and with failure components will be considerd.
Both the singular and nonsingular optimal controls are obtained
in a simple structure invelving lincar strate and switching
functions. The analysis will be applied to the two dimensional
control system , in its general form, with and without component
failure. Two illustrative examples will be given to explain

the feasibility of minimizing the regulized cost functional

under the action of the active components of the control vector.
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The following assumptions are necessary for the for-
thcoming analysis,

1- In the case of two dimensional control system, only one
control parameter fails at time T less than the final
time te for an indefinite period of time and no further
failures occur.

2- The elapsed time between the failure and the formulation
of a new control synthesis is zero.

3~ When the component of control fails, the available cost

and the system states are observable.

2_ LINEAR CONTROL SYSTEM

Consider the completely controllable and observable

linear time invariant multivariable control system:

X=AX+BU (2-1)

where the'd;mensions of the state vector X{t) and the control
vector U(t) are (n . 1) and {m . 1), respectively. The matrix
B has a full rank . It is well known that for a finite time
regulation, the control function U*(t) which minimize the
cost functional

t
£
J(U)=k < XT(tf),F X(t) > + 5[<x, QX>+ < U,RU> Jdt  (2-2)

%

is given by
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vr(t) = -R-IBTR(ey x(0) (2-3)

where (i) the matrix Q is of the form MTM with the pair
(A,M) being completely observable,
(ii) the matrix F is positive semidefinite, and
(iii) the matrix F is positive semidefinite, and
(iv) the matrix K(t) is a unique positive definite.

solution to the matrix Riceati equation
ATk + kA - kBRI B TR+ Q=0 (2-4)
satisfying the boundary condition
K(tf) =F (2-5)

The state of the optimal system is then the solution
of the linear differential system

1

X=1A-BRYBTK X @) - (2-6)

The following two lemmas, which can be proved, [6],
gives the necessary conditions for the existence and uni-

queness of the optimal control.
Lemma 1.

The control vector given by (2-3) yields to a local

minimum for the cost functional (2-3).
Lemma 2.

If an optimal exists, then it is unique and is given-
by (2-3).
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In the following section a modified cost functional
will be introduced by adding a suitably chosen non-quadratic
state penalty term in the cost integrand (2-2). This modifi-
cation 1s necessary to. avoid solving Riccati differential
equation (2-5) and to obtain an explicit synthesis forms for
both sigular and nonsigular optimal controls. The concept
of recoverability for a linear quadratic will be developed

and applied to the control system under consideration.

3- RECOVERABILITY OF A LINEAR QUADRATIC SYSTEM.

Consider the linear control system (2-1), where the
control restraint set {2 is taken to be the unit cube in

R™ » and the matrix B has a full rank . Let r-components

of the control vector U(t) fail at time T ,'F < te . The
modified system is assumed to be
X=AX+ BV (t) (3-1)

where V (t) e RT

Without loss of generality, the cost functional (2-2)
will be modified by assuming that the matrix R equals zero

and the integrand of the cost functional takes the form

m-r
bex,axos y | <c.e), x(v) s} -2
J
i=1
where the m-r dimensional vectors Cj& RN are continuous

functions to be determined. The corresponding Hamilitonian



449

Delta J. Sci. 12(2)1988
A Quadratic Optimal Synthesis

can be written as

m-r
= - B
H(t,X,U, % )=—-3<X,0%> Z |<Cj'x >+ <% ,AX >4¢ 7, BV
1

(3-3)

In accordance with Pontryagin maximum principle, the .
control which minimizes the cost functional has a cost inte-

grand of the form (3-2), and must satisfy the following

relation

H(t,X(t),V(t), 2(t))= max H(L,X(t), V, 7(c)) (3-4)
VER

for some tg [to, tfﬂ. The adjoint vector (.) is the solution
of

, m-r ‘
HOE -—AT?(t)-k»QX-i- T Gy sgn < C 1> (3-5)
=

with the boundary condition

?(tf) =-F X (tf) . (3-6)

The nonsigular optimal control which minimize the

Hamilitonian (2-3), is given by

Vj* (t) = sgn < hJ {(t) , ? (L) » (3-7)

while the singular control will arise on a singular interval
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TS c [tO .ty ] if
< bj(tO),'?(t)>=6 , o 3=l.2,..... ,M-T .
(3-8

Assume that the adjoint vector'?(t) is related to the

state vector X(t) via the symmetric, linear transformation

7(t) = K(t) X(t) (3-9)

where K(t) is a symmetric matrix function, to be determine,
satisfaying the boundary condition (2-5). The nonsigular

control (3-7) can be expressed as follows

v? (t,%) = sgn < K(t) by (1), x> (3-10)

Substituting (3-9) in (3-5) yields

. m-r
K (£) + K(£) A+A K(£)-Q X(t) + J K(t)bj sgn <K(t)bj. X>-

. j=1
- C. <C.,X> =0 3-11
j s&n j ( )
If Cj is defined to be
C. =K(t) b, (t 3-12
j (t) i (t) ( )

then (3-11) will be reduced to the following Lyapunov matrix
differential equaticn

K(t) + K(t) ACt) + AT(t) K(t)-Q(t)=0 (3-13)

which can be solved by using the boundary condition (2-5).
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The cost functional (3-2) is then takes the form

t m-r
JO)=eX (£),F X > + jf K@+ T R(ID (£),K()> ) Tde

j=1
tc (3-14)
Concerning the singular interval Ts , we assume that

the optimal trajectory may lie on one or more of the singular

sets

Yo (B) = {xe R < K(e)b(e) , X > o} (3-15)

To simplify the forthcomming analysis we assume that
only of the control components is singular while all the

others are of nonsingular nature.

On the singular interval TS , we differentiate relation
(3-8).
Using equations (3-1) and (3-13), the singular control can be
determined by

-1
Yop = pp Yp (BT (3-16)

where

[

AR K(t)bp(t) , bp(t) > , (3-17)

o (81 = < LARKOMD b (6), 1ork (05 (6,104

) -
+ 7: < K(t)bp(t),bj(t)>sgn <K(t)bj(t),X> (3-18)

J#p
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In view of the control constrain Vp (t) <1, it
follows that the admissible family of such singular arcs

constitutes a subset Yps of Yjs with the characterization
= J n t i 3 t!X sa t {
Y {(t,X)e[tO, t )R \Xsyp . X¢ ¥.( LS BEACRII O

(3-19)

The above analysis proves the following theorem

Theorem 1,

. For the linear control system under consideration, if
r components of the control fail at time & ,7 < tes then
the remaining components which satisfy system (3-1) and
minimizing the cost functional {3-14) are optimal . This
optimal control decomposed to a nonsingular control given

by (3-10) and a singular one given by (3-16).

In the next section the study will be restrict to the

case of two dimensional control system.

4-TWO DIMENSIONAL SYSTEM WITHOUT COMPONENT FAILURE.

In this case control system (2-1) can be written as

X = a

1 X

11¥1 T 839%g * byp Uy + by, Uy

(4-1)
X -
g = 8p1¥) t+ 8g) ¥y 4 Dy + byy uy
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where b),b,, ~b, b, # 0 . Assume that no component of the

control vector is failed . To simplify the calculation,
consider the followirig two linear transformations,
a) There existes a nonsingular matrix M such that

A, =ML oaM (4-2)

is one of the Jourdan canonical forms.

b) Assume that

-1 T
Ul =M BU , U1 = (u11 Uy, ) (4-3)
Under these two transformations , the control system (4-1)
becomes
X; =Ap X+ Uy (6=4)
Xy = R xp + upy ~ (4-4)

where '11 and jkz are the two real distinct eigenvalues
of the system matrix. Let the matrix Q be a diagonal one
with two diagonal elements a5, and 9y - The cost functional
(3-2) takes the form
't 2 2
2

3= J‘ (Bay %] + ayy x40 <y, Xep |+ <, ,

T

O x(t»1 ) ae - (4-5)
where €y and ¢, are two 2-dimensional constant vectors to

be determined, Since the system matrix~ Ay s symmetric and
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constant, then the  matrix Lyapunov equation (3-13) will be
reduced to

KA+AK-Q=0 (4~6)
or equivalently

20K, - 4y; =

N - _ -
2 2K22 9y, = 0 (4-7)
The symmetric solution matrix K is
a; / 2, 0

K = (4-8)
v 499/ 20,

where)\l ,"}«2 # 0 and ')xl + 9\2 £0 .

The nonsingular controls may be expressed as follows

*
1) = sen (o /20 x) 5 ox, # 0

x (4-9)
U (X) = sgn (q22/2 :\2 xz) ;oX, = 0

on the sigular interval Ts, the optimal trajectoty

X(t) lies on one or more of the following singular sets

2
Y].S ={(X1, Xz)ER lxlz 0 ) X2 ié 0 * |X2, N l} (4_10)



455

Delta J. Sci. 12(2)1988
A Quadratic Optimal Synthesis

2
t2s ={(x1’ XPeR |x; =0, x40, x|« 1} (4-11)

Assume that only the first control is singular, then

the corresponding ?j(t) and dalll(t) can be written as
V() =~k Ay %y, ENRE! (4-12)
& () = 9,/ 2% (4-13)
Then the first singular control is
¥ x 9y 4-14
e = 2% Fapl K X x, (4-14)

This singular control will be equal to zero on the singular

set Yls . Similarly on st the second singular control will

also equal zero . The optimal control can be written as
follows

sgn q),/2°N; x; (xpomp) £ Yg
“Tl(x)=
0 (xl’XZ) € Yls
4-15
* B dp9/2 %, (x,%)) ¢ Y95 (4-13)
uy,(X)=
0 (XI’XZ) € YZS

These two external control parameters minimizing the

following cost functional are :
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t
f
J(U,)= J s 2 2
10 Glayxy ¥ agy ) 0% (apy/ 20y xpragy/2 00, Nde
0 (4-16)
In the following example, the case of two complex eigenvalues
will be considerd .
Example 1.

Consider the control system

x1 = x2 + ul

(4-17)
x2 = —2x1 - 2x2 + u2
with a cost functional of the form
e
J) = 2 2 .
J (2x1 + Xq + |<<.1,X>] + 4 Cos X > } dt
to

The corresponding matrix Lyapunov equation (3-13) will be
reduced to take the same form as (4-6) with solution as
K =-4,k =K =K =-1.
11 12 21 22

consequentely the two constant vectors c, and ¢, are to
be

C1= ( A —l)T and C2= ( =1 ~1 )T

The corresponding nonsingular controls are

‘x.
Yy (Xl,xz) = - sgn (4x1 + xz) . and
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#
ug (xl, xz) - Sgn (xl t %, } .

On the interval TS, X(t) lies on one more of the following

singular sets

2 f

Yls= {(xl, xz)g R/4 x1+x2=0 R x1+x2#0},
2

Y28 = {'(xl, xz) € R / Xp + Xy = o ., 4x1+ Xo # C{} -
2 = - =

YI,ZS _§_ (xl, X, JeR I &xl+ X o= 0, x; 4 %y U.} '

On Ts assume that only the first control is singular,then it -
i8 given by

L]

Ul (xl . x2) = =1/4 (lﬂxl =3  sgn xl)
Similarly if U, is singular then

%

u2s(x1’x2) = x; 3 sgn R

The required optimal control is given by

- sgn (4x1+x2); (x1+x2) € Yls

u;(xl,x2)=
- 1/4(10x,-3 sgn x() 5 (xy, X,) € Yy

sgn (x1+ x2) : (xl, XZ) & st

*
u, (xl, XZ)_ ~

X+ 3 sgn X1 X ==Xy (x1 , XZ)EYZS

and minimizes the following cost functional
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J(U) = ‘[tf(z 24 bx, + - ) dt
= - X] + x5 + l —4x) le +4 X+ le
0

Considering the ‘above analysis mentioned in section 3|

the control problem with a failure component will be given

throught the next example.

Example 2.

Let the component uy of the control system

described by

X 2 ’ X2=-X1+U2

17X
fails at time T befor the objective is accomplished. In this

case the corresponding cost functional takes the following

from
P

J(U)= S_ (2x1 +xo + \<c
to'

Here the nonsingular control will be given by

1 X >{) dt

Uy (xy0 x,) = = sgn (%3) 3 xy £ 0

while on TS the optimal trajectory lie on the set
2
Y, - {~( Ky 0% JER 3= 05 x4 05yl ¢ 1)

and the singular control is given by
X

s (X X)) =y

This proves that the optimal control defined by
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. - osen X, if (xl y %o ) £ YZS
Uy (%y:%y)

Xy if (xl » X ) st
will minimize the following cost functional

t

f 2 2

Yo

If failure occur on Uy then the problem can be solved in a

similar way .
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